The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Ti(30728hit)

661-680hit(30728hit)

  • Counting and Tracking People to Avoid from Crowded in a Restaurant Using mmWave Radar

    Shenglei LI  Reiko HISHIYAMA  

     
    PAPER-Office Information Systems, e-Business Modeling

      Pubricized:
    2023/03/24
      Vol:
    E106-D No:6
      Page(s):
    1142-1154

    One key to implementing the smart city is letting the smart space know where and how many people are. The visual method is a scheme to recognize people with high accuracy, but concerns arise regarding potential privacy leakage and user nonacceptance. Besides, being functional in a limited environment in an emergency should also be considered. We propose a real-time people counting and tracking system based on a millimeter wave radar (mmWave) as an alternative to the optical solutions in a restaurant. The proposed method consists of four main procedures. First, capture the point cloud of obstacles and generate them using a low-cost, commercial off-the-shelf (COTS) mmWave radar. Next, cluster the individual point with similar properties. Then the same people in sequential frames would be associated with the tracking algorithm. Finally, the estimated people would be counted, tracked, and shown in the next frame. The experiment results show that our proposed system provided a median position error of 0.17 m and counting accuracy of 83.5% for ten insiders in various scenarios in an actual restaurant environment. In addition, the real-time estimation and visualization of people's numbers and positions show a potential capability to help prevent crowds during the pandemic of Covid-19 and analyze customer visitation patterns for efficient management and target marketing.

  • Design and Implementation of a Simulator to Emulate Elder Behavior in a Nursing Home

    You-Chiun WANG  Yi-No YAO  

     
    PAPER-Rehabilitation Engineering and Assistive Technology

      Pubricized:
    2023/03/13
      Vol:
    E106-D No:6
      Page(s):
    1155-1164

    Many countries are facing the aging problem caused by the growth of the elderly population. Nursing home (NH) is a common solution to long-term care for the elderly. This paper develops a simulator to model elder behavior in an NH, which considers public areas where elders interact and imitates their general, group, and special activities. Elders have their preferences to decide activities taken by them. The simulator takes account of the movement of elders and abnormal events. Based on the simulator, two seeking methods are proposed for caregivers to search lost elders efficiently, which helps them fast find out elders who may incur accidents.

  • FSPose: A Heterogeneous Framework with Fast and Slow Networks for Human Pose Estimation in Videos

    Jianfeng XU  Satoshi KOMORITA  Kei KAWAMURA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2023/03/20
      Vol:
    E106-D No:6
      Page(s):
    1165-1174

    We propose a framework for the integration of heterogeneous networks in human pose estimation (HPE) with the aim of balancing accuracy and computational complexity. Although many existing methods can improve the accuracy of HPE using multiple frames in videos, they also increase the computational complexity. The key difference here is that the proposed heterogeneous framework has various networks for different types of frames, while existing methods use the same networks for all frames. In particular, we propose to divide the video frames into two types, including key frames and non-key frames, and adopt three networks including slow networks, fast networks, and transfer networks in our heterogeneous framework. For key frames, a slow network is used that has high accuracy but high computational complexity. For non-key frames that follow a key frame, we propose to warp the heatmap of a slow network from a key frame via a transfer network and fuse it with a fast network that has low accuracy but low computational complexity. Furthermore, when extending to the usage of long-term frames where a large number of non-key frames follow a key frame, the temporal correlation decreases. Therefore, when necessary, we use an additional transfer network that warps the heatmap from a neighboring non-key frame. The experimental results on PoseTrack 2017 and PoseTrack 2018 datasets demonstrate that the proposed FSPose achieves a better balance between accuracy and computational complexity than the competitor method. Our source code is available at https://github.com/Fenax79/fspose.

  • A Shallow SNN Model for Embedding Neuromorphic Devices in a Camera for Scalable Video Surveillance Systems

    Kazuhisa FUJIMOTO  Masanori TAKADA  

     
    PAPER-Biocybernetics, Neurocomputing

      Pubricized:
    2023/03/13
      Vol:
    E106-D No:6
      Page(s):
    1175-1182

    Neuromorphic computing with a spiking neural network (SNN) is expected to provide a complement or alternative to deep learning in the future. The challenge is to develop optimal SNN models, algorithms, and engineering technologies for real use cases. As a potential use cases for neuromorphic computing, we have investigated a person monitoring and worker support with a video surveillance system, given its status as a proven deep neural network (DNN) use case. In the future, to increase the number of cameras in such a system, we will need a scalable approach that embeds only a few neuromorphic devices in a camera. Specifically, this will require a shallow SNN model that can be implemented in a few neuromorphic devices while providing a high recognition accuracy comparable to a DNN with the same configuration. A shallow SNN was built by converting ResNet, a proven DNN for image recognition, and a new configuration of the shallow SNN model was developed to improve its accuracy. The proposed shallow SNN model was evaluated with a few neuromorphic devices, and it achieved a recognition accuracy of more than 80% with about 1/130 less energy consumption than that of a GPU with the same configuration of DNN as that of SNN.

  • I/O Performance Improvement of FHE Apriori with Striping File Layout Considering Storage of Intermediate Data

    Atsuki KAMO  Saneyasu YAMAGUCHI  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2023/03/13
      Vol:
    E106-D No:6
      Page(s):
    1183-1185

    Fully homomorphic encryption (FHE) enables secret computations. Users can perform computation using data encrypted with FHE without decryption. Uploading private data without encryption to a public cloud has the risk of data leakage, which makes many users hesitant to utilize a public cloud. Uploading data encrypted with FHE avoids this risk, while still providing the computing power of the public cloud. In many cases, data are stored in HDDs because the data size increases significantly when FHE is used. One important data analysis is Apriori data mining. In this application, two files are accessed alternately, and this causes long-distance seeking on its HDD and low performance. In this paper, we propose a new striping layout with reservations for write areas. This method intentionally fragments files and arranges blocks to reduce the distance between blocks in a file and another file. It reserves the area for intermediate files of FHE Apriori. The performance of the proposed method was evaluated based on the I/O processing of a large FHE Apriori, and the results showed that the proposed method could improve performance by up to approximately 28%.

  • Fixed Point Preserving Model Reduction of Boolean Networks Focusing on Complement and Absorption Laws

    Fuma MOTOYAMA  Koichi KOBAYASHI  Yuh YAMASHITA  

     
    PAPER

      Pubricized:
    2022/10/24
      Vol:
    E106-A No:5
      Page(s):
    721-728

    A Boolean network (BN) is well known as a discrete model for analysis and control of complex networks such as gene regulatory networks. Since complex networks are large-scale in general, it is important to consider model reduction. In this paper, we consider model reduction that the information on fixed points (singleton attractors) is preserved. In model reduction studied here, the interaction graph obtained from a given BN is utilized. In the existing method, the minimum feedback vertex set (FVS) of the interaction graph is focused on. The dimension of the state is reduced to the number of elements of the minimum FVS. In the proposed method, we focus on complement and absorption laws of Boolean functions in substitution operations of a Boolean function into other one. By simplifying Boolean functions, the dimension of the state may be further reduced. Through a numerical example, we present that by the proposed method, the dimension of the state can be reduced for BNs that the dimension of the state cannot be reduced by the existing method.

  • Thermal-Comfort Aware Online Co-Scheduling Framework for HVAC, Battery Systems, and Appliances in Smart Buildings

    Daichi WATARI  Ittetsu TANIGUCHI  Francky CATTHOOR  Charalampos MARANTOS  Kostas SIOZIOS  Elham SHIRAZI  Dimitrios SOUDRIS  Takao ONOYE  

     
    INVITED PAPER

      Pubricized:
    2022/10/24
      Vol:
    E106-A No:5
      Page(s):
    698-706

    Energy management in buildings is vital for reducing electricity costs and maximizing the comfort of occupants. Excess solar generation can be used by combining a battery storage system and a heating, ventilation, and air-conditioning (HVAC) system so that occupants feel comfortable. Despite several studies on the scheduling of appliances, batteries, and HVAC, comprehensive and time scalable approaches are required that integrate such predictive information as renewable generation and thermal comfort. In this paper, we propose an thermal-comfort aware online co-scheduling framework that incorporates optimal energy scheduling and a prediction model of PV generation and thermal comfort with the model predictive control (MPC) approach. We introduce a photovoltaic (PV) energy nowcasting and thermal-comfort-estimation model that provides useful information for optimization. The energy management problem is formulated as three coordinated optimization problems that cover fast and slow time-scales by considering predicted information. This approach reduces the time complexity without a significant negative impact on the result's global nature and its quality. Experimental results show that our proposed framework achieves optimal energy management that takes into account the trade-off between electricity expenses and thermal comfort. Our sensitivity analysis indicates that introducing a battery significantly improves the trade-off relationship.

  • Conflict Reduction of Acyclic Flow Event Structures

    Toshiyuki MIYAMOTO  Marika IZAWA  

     
    PAPER

      Pubricized:
    2022/10/26
      Vol:
    E106-A No:5
      Page(s):
    707-714

    Event structures are a well-known modeling formalism for concurrent systems with causality and conflict relations. The flow event structure (FES) is a variant of event structures, which is a generalization of the prime event structure. In an FES, two events may be in conflict even though they are not syntactically in conflict; this is called a semantic conflict. The existence of semantic conflict in an FES motivates reducing conflict relations (i.e., conflict reduction) to obtain a simpler structure. In this paper, we study conflict reduction in acyclic FESs. A necessary and sufficient condition for conflict reduction is given; algorithms to compute semantic conflict, local configurations, and conflict reduction are proposed. A great time reduction was observed in computational experiments when comparing the proposed with the naive method.

  • Optimal Movement for SLAM by Hopping Rover

    Shuntaro TAKEKUMA  Shun-ichi AZUMA  Ryo ARIIZUMI  Toru ASAI  

     
    PAPER

      Pubricized:
    2022/10/24
      Vol:
    E106-A No:5
      Page(s):
    715-720

    A hopping rover is a robot that can move in low gravity planets by the characteristic motion called the hopping motion. For its autonomous explorations, the so-called SLAM (Simultaneous Localization and Mapping) is a basic function. SLAM is the combination of estimating the position of a robot and creating a map of an unknown environment. Most conventional methods of SLAM are based on odometry to estimate the position of the robot. However, in the case of the hopping rover, the error of odometry becomes considerably large because its hopping motion involves unpredictable bounce on the rough ground on an unexplored planet. Motivated by the above discussion, this paper addresses a problem of finding an optimal movement of the hopping rover for the estimation performance of the SLAM. For the problem, we first set the model of the SLAM system for the hopping rover. The problem is formulated as minimizing the expectation of the estimation error at a pre-specified time with respect to the sequence of control inputs. We show that the optimal input sequence tends to force the final position to be not at the landmark but in front of the landmark, and furthermore, the optimal input sequence is constant on the time interval for optimization.

  • Detection of False Data Injection Attacks in Distributed State Estimation of Power Networks

    Sho OBATA  Koichi KOBAYASHI  Yuh YAMASHITA  

     
    PAPER

      Pubricized:
    2022/10/24
      Vol:
    E106-A No:5
      Page(s):
    729-735

    In a power network, it is important to detect a cyber attack. In this paper, we propose a method for detecting false data injection (FDI) attacks in distributed state estimation. An FDI attack is well known as one of the typical cyber attacks in a power network. As a method of FDI attack detection, we consider calculating the residual (i.e., the difference between the observed and estimated values). In the proposed detection method, the tentative residual (estimated error) in ADMM (Alternating Direction Method of Multipliers), which is one of the powerful methods in distributed optimization, is applied. First, the effect of an FDI attack is analyzed. Next, based on the analysis result, a detection parameter is introduced based on the residual. A detection method using this parameter is then proposed. Finally, the proposed method is demonstrated through a numerical example on the IEEE 14-bus system.

  • Design of Full State Observer Based on Data-Driven Dual System Representation

    Ryosuke ADACHI  Yuji WAKASA  

     
    PAPER

      Pubricized:
    2022/10/24
      Vol:
    E106-A No:5
      Page(s):
    736-743

    This paper addresses an observer-design method only using data. Usually, the observer requires a mathematical model of a system for state prediction and observer gain calculation. As an alternative to the model-based prediction, the proposed predictor calculates the states using a linear combination of the given data. To design the observer gain, the data which represent dual systems are derived from the data which represent the original system. Linear matrix inequalities that depend on data of the dual system provides the observer gains.

  • On Spectral Efficiency of OFDM Signals Based on Windowing

    Hideki OCHIAI  

     
    INVITED PAPER

      Pubricized:
    2022/12/19
      Vol:
    E106-A No:5
      Page(s):
    752-764

    We discuss the spectral efficiency of orthogonal frequency-division multiplexing (OFDM) signals widely adopted in practical systems from a viewpoint of their power spectral density property. Since the conventional OFDM does not make use of pulse shaping filter, its out-of-band (OOB) spectrum may not be negligible especially when the number of subcarriers is small. Thus, in practice, windowing is applied to mitigate OOB emission by smoothing the transition of consecutive OFDM symbols, but its effectiveness has not been well investigated. Furthermore, OFDM signal suffers from nonlinear distortion associated with its high signal peak-to-average power ratio (PAPR), which also leads to OOB radiation. We examine how power amplifier nonlinearity affects the spectral efficiency based on the theoretical results developed in the literature.

  • Performance Evaluation of Wi-Fi RTT Lateration without Pre-Constructing a Database

    Tetsuya MANABE  Kazuya SABA  

     
    PAPER

      Pubricized:
    2022/12/02
      Vol:
    E106-A No:5
      Page(s):
    765-774

    This paper proposes an algorithm for estimating the location of wireless access points (APs) in indoor environments to realize smartphone positioning based on Wi-Fi without pre-constructing a database. The proposed method is designed to overcome the main problem of existing positioning methods requiring the advance construction of a database with coordinates or precise AP location measurements. The proposed algorithm constructs a local coordinate system with the first four APs that are activated in turn, and estimates the AP installation location using Wi-Fi round-trip time (RTT) lateration and the ranging results between the APs. The effectiveness of the proposed algorithm is confirmed by conducting experiments in a real indoor environment consisting of two rooms of different sizes to evaluate the positioning performance of the algorithm. The experimental results showed the proposed algorithm using Wi-Fi RTT lateration delivers high smartphone positioning performance without a pre-constructed database or precise AP location measurements.

  • Image Segmentation-Based Bicycle Riding Side Identification Method

    Jeyoen KIM  Takumi SOMA  Tetsuya MANABE  Aya KOJIMA  

     
    PAPER

      Pubricized:
    2022/11/02
      Vol:
    E106-A No:5
      Page(s):
    775-783

    This paper attempts to identify which side of the road a bicycle is currently riding on using a common camera for realizing an advanced bicycle navigation system and bicycle riding safety support system. To identify the roadway area, the proposed method performs semantic segmentation on a front camera image captured by a bicycle drive recorder or smartphone. If the roadway area extends from the center of the image to the right, the bicyclist is riding on the left side of the roadway (i.e., the correct riding position in Japan). In contrast, if the roadway area extends to the left, the bicyclist is on the right side of the roadway (i.e., the incorrect riding position in Japan). We evaluated the accuracy of the proposed method on various road widths with different traffic volumes using video captured by riding bicycles in Tsuruoka City, Yamagata Prefecture, and Saitama City, Saitama Prefecture, Japan. High accuracy (>80%) was achieved for any combination of the segmentation model, riding side identification method, and experimental conditions. Given these results, we believe that we have realized an effective image segmentation-based method to identify which side of the roadway a bicycle riding is on.

  • Evaluation of Non-GPS Train Localization Schemes Using a Commodity Smartphone with Built-In Sensors

    Masaya NISHIGAKI  Takaaki HASEGAWA  Yuki SAIGUSA  

     
    PAPER

      Pubricized:
    2022/11/04
      Vol:
    E106-A No:5
      Page(s):
    784-792

    In this paper, we compare performances of train localization schemes by the dynamic programming of various sensor information obtained from a smartphone attached to a train, and further discuss the most superior sensor information and scheme in this localization system. First, we compare the localization performances of single sensor information schemes, such as 3-axis acceleration information, acoustic information, 3-axis magnetic information, and barometric pressure information. These comparisons reveal that the lateral acceleration information input scheme has the best localization performance. Furthermore, we optimize each data fusion scheme and compare the localization performances of the data-fusion schemes using the optimal ratio of coefficients. The results show that the hybrid scheme has the best localization performance, with a root mean squared error (RMSE) of 12.2 m. However, there are no differences between the RMSEs of the input fusion scheme and 3-axis acceleration input scheme in the most significant three digits. Consequently, we conclude that the 3-axis acceleration input fusion scheme is the most reasonable in terms of simplicity.

  • Space Division Multiplexing Using High-Luminance Cell-Size Reduction Arrangement for Low-Luminance Smartphone Screen to Camera Uplink Communication

    Alisa KAWADE  Wataru CHUJO  Kentaro KOBAYASHI  

     
    PAPER

      Pubricized:
    2022/11/01
      Vol:
    E106-A No:5
      Page(s):
    793-802

    To simultaneously enhance data rate and physical layer security (PLS) for low-luminance smartphone screen to camera uplink communication, space division multiplexing using high-luminance cell-size reduction arrangement is numerically analyzed and experimentally verified. The uplink consists of a low-luminance smartphone screen and an indoor telephoto camera at a long distance of 3.5 meters. The high-luminance cell-size reduction arrangement avoids the influence of spatial inter-symbol interference (ISI) and ambient light to obtain a stable low-luminance screen. To reduce the screen luminance without decreasing the screen pixel value, the arrangement reduces only the high-luminance cell area while keeping the cell spacing. In this study, two technical issues related to high-luminance cell-size reduction arrangement are solved. First, a numerical analysis and experimental results show that the high-luminance cell-size reduction arrangement is more effective in reducing the spatial ISI at low luminance than the conventional low-luminance cell arrangement. Second, in view point of PLS enhancement at wide angles, symbol error rate should be low in front of the screen and high at wide angles. A numerical analysis and experimental results show that the high-luminance cell-size reduction arrangement is more suitable for enhancing PLS at wide angles than the conventional low-luminance cell arrangement.

  • New Bounds of No-Hit-Zone Frequency-Hopping Sequences with Frequency Shift

    Qianhui WEI  Hongyu HAN  Limengnan ZHOU  Hanzhou WU  

     
    LETTER

      Pubricized:
    2022/11/02
      Vol:
    E106-A No:5
      Page(s):
    803-806

    In quasi-synchronous FH multiple-access (QS-FHMA) systems, no-hit-zone frequency-hopping sequences (NHZ-FHSs) can offer interference-free FHMA performance. But, outside the no-hit-zone (NHZ), the Hamming correlation of traditional NHZ-FHZs maybe so large that the performance becomes not good. And in high-speed mobile environment, Doppler shift phenomenon will appear. In order to ensure the performance of FHMA, it is necessary to study the NHZ-FHSs in the presence of transmission delay and frequency offset. In this paper, We derive a lower bound on the maximum time-frequency two-dimensional Hamming correlation outside of the NHZ of NHZ-FHSs. The Zeng-Zhou-Liu-Liu bound is a particular situation of the new bound for frequency shift is zero.

  • Blind Carrier Frequency Offset Estimation in Weighted Fractional Fourier Transform Communication Systems

    Toshifumi KOJIMA  Kouji OHUCHI  

     
    LETTER

      Pubricized:
    2022/11/07
      Vol:
    E106-A No:5
      Page(s):
    807-811

    In this study, a blind carrier frequency offset (CFO) estimation method is proposed using the time-frequency symmetry of the transmitted signals of a weighted Fourier transform (WFrFT) communication system. Blind CFO estimation is achieved by focusing on the property that results in matching the signal waveforms before and after the Fourier transform when the WFrFT parameter is set to a certain value. Numerical simulations confirm that the proposed method is more resistant to Rayleigh fading than the conventional estimation methods.

  • Elevation Filter Design for Short-Range Clutter Suppression on Airborne Radar in MIMO System

    Fengde JIA  Jihong TAN  Xiaochen LU  Junhui QIAN  

     
    LETTER

      Pubricized:
    2022/11/04
      Vol:
    E106-A No:5
      Page(s):
    812-815

    Short-range ambiguous clutter can seriously affect the performance of airborne radar target detection when detecting long-range targets. In this letter, a multiple-input-multiple-output (MIMO) array structure elevation filter (EF) is designed to suppress short-range clutter (SRC). The sidelobe level value in the short-range clutter region is taken as the objective function to construct the optimization problem and the optimal EF weight vector can be obtained by using the convex optimization tool. The simulation results show that the MIMO system can achieve better range ambiguous clutter suppression than the traditional phased array (PA) system.

  • Modulation Configurations of Phase Locked Loops for High-Speed and High-Precision Wired and Wireless Applications

    Masaru KOKUBO  

     
    INVITED PAPER

      Pubricized:
    2022/11/25
      Vol:
    E106-A No:5
      Page(s):
    817-822

    This paper summarizes the modulation configurations of phase locked loops (PLLs) and their integration in semiconductor circuits, e.g., the input modulation for cellular phones, direct-modulation for low power wireless sensor networks, feedback-loop modulation for high-speed transmission, and two-point modulation for short-range radio transceivers. In this survey, basic configuration examples of integrated circuits for wired and wireless applications which are using the PLL modulation configurations are explained. It is important to select the method for simply and effectively determining the characteristics corresponding to the specific application. The paper also surveys technologies for future PLL design for digitizing of an entire PLL to reduce the phase noise due to a modulation by using a feedback loop with a precise digital phase comparison and a numerically controlled oscillator with high linearity.

661-680hit(30728hit)