The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Ti(30728hit)

821-840hit(30728hit)

  • Lookahead Search-Based Low-Complexity Multi-Type Tree Pruning Method for Versatile Video Coding (VVC) Intra Coding

    Qi TENG  Guowei TENG  Xiang LI  Ran MA  Ping AN  Zhenglong YANG  

     
    PAPER-Coding Theory

      Pubricized:
    2022/08/24
      Vol:
    E106-A No:3
      Page(s):
    606-615

    The latest versatile video coding (VVC) introduces some novel techniques such as quadtree with nested multi-type tree (QTMT), multiple transform selection (MTS) and multiple reference line (MRL). These tools improve compression efficiency compared with the previous standard H.265/HEVC, but they suffer from very high computational complexity. One of the most time-consuming parts of VVC intra coding is the coding tree unit (CTU) structure decision. In this paper, we propose a low-complexity multi-type tree (MT) pruning method for VVC intra coding. This method consists of lookahead search and MT pruning. The lookahead search process is performed to derive the approximate rate-distortion (RD) cost of each MT node at depth 2 or 3. Subsequently, the improbable MT nodes are pruned by different strategies under different cost errors. These strategies are designed according to the priority of the node. Experimental results show that the overall proposed algorithm can achieve 47.15% time saving with only 0.93% Bjøntegaard delta bit rate (BDBR) increase over natural scene sequences, and 45.39% time saving with 1.55% BDBR increase over screen content sequences, compared with the VVC reference software VTM 10.0. Such results demonstrate that our method achieves a good trade-off between computational complexity and compression quality compared to recent methods.

  • Tourism Application Considering Waiting Time

    Daiki SAITO  Jeyeon KIM  Tetsuya MANABE  

     
    PAPER-Intelligent Transport System

      Pubricized:
    2022/09/06
      Vol:
    E106-A No:3
      Page(s):
    633-643

    Currently, the proportion of independent travel is increasing in Japan. Therefore, earlier studies supporting itinerary planning have been presented. However, these studies have only insufficiently considered rural tourism. For example, tourist often use public transportation during trips in rural areas, although it is often difficult for a tourist to plan an itinerary for public transportation. Even if an itinerary can be planned, it will entail long waiting times at the station or bus stop. Nevertheless, earlier studies have only insufficiently considered these elements in itinerary planning. On the other hand, navigation is necessary in addition to itinerary creation. Particularly, recent navigation often considers dynamic information. During trips using public transportation, schedule changes are important dynamic information. For example, tourist arrive at bus stop earlier than planned. In such case, the waiting time will be longer than the waiting time included in the itinerary. In contrast, if a person is running behind schedule, a risk arises of missing bus. Nevertheless, earlier studies have only insufficiently considered these schedule changes. In this paper, we construct a tourism application that considers the waiting time to improve the tourism experience in rural areas. We define waiting time using static waiting time and dynamic waiting time. Static waiting time is waiting time that is included in the itinerary. Dynamic waiting time is the waiting time that is created by schedule changes during a trip. With this application, static waiting times is considered in the planning function. The dynamic waiting time is considered in the navigation function. To underscore the effectiveness of this application, experiments of the planning function and experiments of the navigation function is conducted in Tsuruoka City, Yamagata Prefecture. Based on the results, we confirmed that a tourist can readily plan a satisfactory itinerary using the planning function. Additionally, we confirmed that Navigation function can use waiting times effectively by suggesting additional tourist spots.

  • A Data-Driven Gain Tuning Method for Automatic Hovering Control of Multicopters via Just-in-Time Modeling

    Tatsuya KAI  Ryouhei KAKURAI  

     
    LETTER-Systems and Control

      Pubricized:
    2022/08/29
      Vol:
    E106-A No:3
      Page(s):
    644-646

    This study develops a new automatic hovering control method based on just-in-time modeling for a multicopter. Especially, the main aim is to compute gains of a feedback control law such that the multicopter hovers at a desired height and at a desired time without overshoot/undershoot. First, a database that contains various hovering data is constructed, and then the proposed method computes gains for a query input from the database. From simulation results, it turns out that the multicopter achieves control purposes, and hence the new method is effective.

  • Double-Directional Time-Spatial Measurement Method Using Synthetic Aperture Antenna

    Kazuma TOMIMOTO  Ryo YAMAGUCHI  Takeshi FUKUSAKO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2022/09/21
      Vol:
    E106-B No:3
      Page(s):
    250-259

    The 5th-generation mobile communication uses multi-element array antennas in not only base stations but also mobile terminals. In order to design multi-element array antennas efficiently, it is important to acquire the characteristics of the direction of arrival (DOA) and direction of departure (DOD), and a highly accurate and simple measurement method is required. This paper proposes a highly accurate and simple method to measure DOA and DOD by applying synthetic aperture (SA) processed at both Rx and Tx sides. It is also shown that the addition of beam scanning to the proposed method can reduce the measurement time while maintaining the peak detection resolution. Moreover, experiments in an anechoic chamber and a shielded room using actual wave sources confirm that DOA and DOD can be detected with high accuracy.

  • Noncoherent Demodulation and Decoding via Polynomial Zeros Modulation for Pilot-Free Short Packet Transmissions over Multipath Fading Channels

    Yaping SUN  Gaoqi DOU  Hao WANG  Yufei ZHANG  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Pubricized:
    2022/09/21
      Vol:
    E106-B No:3
      Page(s):
    213-220

    With the advent of the Internet of Things (IoT), short packet transmissions will dominate the future wireless communication. However, traditional coherent demodulation and channel estimation schemes require large pilot overhead, which may be highly inefficient for short packets in multipath fading scenarios. This paper proposes a novel pilot-free short packet structure based on the association of modulation on conjugate-reciprocal zeros (MOCZ) and tail-biting convolutional codes (TBCC), where a noncoherent demodulation and decoding scheme is designed without the channel state information (CSI) at the transceivers. We provide a construction method of constellation sets and demodulation rule for M-ary MOCZ. By deriving low complexity log-likelihood ratios (LLR) for M-ary MOCZ, we offer a reasonable balance between energy and bandwidth efficiency for joint coding and modulation scheme. Simulation results show that our proposed scheme can attain significant performance and throughput gains compared to the pilot-based coherent modulation scheme over multipath fading channels.

  • iMon: Network Function Virtualisation Monitoring Based on a Unique Agent

    Cong ZHOU  Jing TAO  Baosheng WANG  Na ZHAO  

     
    PAPER-Network

      Pubricized:
    2022/09/21
      Vol:
    E106-B No:3
      Page(s):
    230-240

    As a key technology of 5G, NFV has attracted much attention. In addition, monitoring plays an important role, and can be widely used for virtual network function placement and resource optimisation. The existing monitoring methods focus on the monitoring load without considering they own resources needed. This raises a unique challenge: jointly optimising the NFV monitoring systems and minimising their monitoring load at runtime. The objective is to enhance the gain in real-time monitoring metrics at minimum monitoring costs. In this context, we propose a novel NFV monitoring solution, namely, iMon (Monitoring by inferring), that jointly optimises the monitoring process and reduces resource consumption. We formalise the monitoring process into a multitarget regression problem and propose three regression models. These models are implemented by a deep neural network, and an experimental platform is built to prove their availability and effectiveness. Finally, experiments also show that monitoring resource requirements are reduced, and the monitoring load is just 0.6% of that of the monitoring tool cAdvisor on our dataset.

  • Dual Bands and Dual Polarization Reflectarray for Millimeter Wave Application by Supercell Structure

    Hiroshi HASHIGUCHI  Takumi NISHIME  Naobumi MICHISHITA  Hisashi MORISHITA  Hiromi MATSUNO  Takuya OHTO  Masayuki NAKANO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2022/09/12
      Vol:
    E106-B No:3
      Page(s):
    241-249

    This paper presents dual bands and dual polarization reflectarrays for 5G millimeter wave applications. The frequency bands of 28GHz and 39GHz are allocated for 5G to realize high speed data transmission. However, these high frequency bands create coverage holes in which no link between base station and receivers is possible. Reflectarray has gained attention for reducing the size and number of coverage holes. This paper proposes a unit cell with swastika and the patch structure to construct the dual bands reflectrray operating at 28GHz and 39GHz by supercell. This paper also presents the detailed design procedure of the dual-bands reflectarray by supercell. The reflectarray is experimentally validated by a bistatic radar cross section measurement system. The experimental results are compared with simulation and reflection angle agreement is observed.

  • Scattering of a Coaxial Cable with a Grooved Flange Using the Associated Weber-Orr Transform

    Sang-kyu KIM  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2022/08/24
      Vol:
    E106-B No:3
      Page(s):
    260-266

    Electromagnetic scattering in a coaxial cable having two flanges and concentric grooves is studied. The associated Weber-Orr transform is used to represent electromagnetic fields in an infinitely long cavity, and the mode-matching method is used to enforce boundary continuity. S-parameters obtained by our approach are compared with the reference solutions, and the characteristics are discussed when geometric parameters are varied. The results show that the proposed model provides cost effective and accurate solutions to the problem.

  • On the Degrees of Freedom of a Propagation-Delay Based Multicast X Channel with Two Transmitters and Arbitrary Receivers

    Conggai LI  Qian GAN  Feng LIU  Yanli XU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/08/23
      Vol:
    E106-B No:3
      Page(s):
    267-274

    Compared with the unicast scenario, X channels with multicast messaging can support richer transmission scenarios. The transmission efficiency of the wireless multicast X channel is an important and open problem. This article studies the degrees of freedom of a propagation-delay based multicast X channel with two transmitters and arbitrary receivers, where each transmitter sends K different messages and each receiver desires K - 1 of them from each transmitter. The cyclic polynomial approach is adopted for modeling and analysis. The DoF upper bound is analyzed and shown to be unreachable. Then a suboptimal scheme with one extra time-slot cycle is proposed, which uses the cyclic interference alignment method and achieves a DoF of K - 1. Finally, the feasibility conditions in the Euclidean space are derived and the potential applications are demonstrated for underwater acoustic and terrestrial radio communications.

  • A Novel Unambiguous Acquisition Algorithm Based on Segmentation Reconstruction for BOC(n,n) Signal Open Access

    Yuanfa JI  Sisi SONG  Xiyan SUN  Ning GUO  Youming LI  

     
    PAPER-Navigation, Guidance and Control Systems

      Pubricized:
    2022/08/26
      Vol:
    E106-B No:3
      Page(s):
    287-295

    In order to improve the frequency band utilization and avoid mutual interference between signals, the BD3 satellite signals adopt Binary Offset Carrier (BOC) modulation. On one hand, BOC modulation has a narrow main peak width and strong anti-interference ability; on the other hand, the phenomenon of false acquisition locking caused by the multi-peak characteristic of BOC modulation itself needs to be resolved. In this context, this paper proposes a new BOC(n,n) unambiguous acquisition algorithm based on segmentation reconstruction. The algorithm is based on splitting the local BOC signal into four parts in each subcarrier period. The branch signal and the received signal are correlated with the received signal to generate four branch correlation signals. After a series of combined reconstructions, the final signal detection function completely eliminates secondary peaks. A simulation shows that the algorithm can completely eliminate the sub-peak interference for the BOC signals modulated by subcarriers with different phase. The characteristics of narrow correlation peak are retained. Experiments show that the proposed algorithm has superior performance in detection probability and peak-to-average ratio.

  • Theoretical and Experimental Analysis of the Spurious Modes and Quality Factors for Dual-Mode AlN Lamb-Wave Resonators

    Haiyan SUN  Xingyu WANG  Zheng ZHU  Jicong ZHAO  

     
    PAPER-Ultrasonic Electronics

      Pubricized:
    2022/08/10
      Vol:
    E106-C No:3
      Page(s):
    76-83

    In this paper, the spurious modes and quality-factor (Q) values of the one-port dual-mode AlN lamb-wave resonators at 500-1000 MHz were studied by theoretical analysis and experimental verification. Through finite element analysis, we found that optimizing the width of the lateral reflection boundary at both ends of the resonator to reach the quarter wavelength (λ/4), which can improve its spectral purity and shift its resonant frequency. The designed resonators were micro-fabricated by using lithography processes on a 6-inch wafer. The measured results show that the spurious mode can be converted and dissipated, splitting into several longitudinal modes by optimizing the width of the lateral reflection boundary, which are consistent well with the theoretical analysis. Similarly, optimizing the interdigital transducer (IDT) width and number of IDT fingers can also suppress the resonator's spurious modes. In addition, it is found that there is no significant difference in the Qs value for the two modes of the dual-mode resonator with the narrow anchor and full anchor. The acoustic wave leaked from the anchor into the substrate produces a small displacement, and the energy is limited in the resonator. Compared to the resonator with Au IDTs, the resonator with Al IDTs can achieve a higher Q value due to its lower thermo-elastic damping loss. The measured results show the optimized dual-mode lamb-wave resonator can obtain Qs value of 2946.3 and 2881.4 at 730.6 MHz and 859.5 MHz, Qp values of 632.5 and 1407.6, effective electromechanical coupling coefficient (k2eff) of 0.73% and 0.11% respectively, and has excellent spectral purity simultaneously.

  • Fully Digital Calibration Technique for Channel Mismatch of TIADC at Any Frequency

    Hongmei CHEN  Jian WANG  Lanyu WANG  Long LI  Honghui DENG  Xu MENG  Yongsheng YIN  

     
    PAPER-Electronic Circuits

      Pubricized:
    2022/10/13
      Vol:
    E106-C No:3
      Page(s):
    84-92

    This paper presents a fully digital modulation calibration technique for channel mismatch of TIADC at any frequency. By pre-inputting a test signal in TIADC, the mismatch errors are estimated and stored, and the stored values will be extracted for compensation when the input signal is at special frequency which can be detected by a threshold judgement module, thus solving the problem that the traditional modulation calibration algorithm cannot calibrate the signal at special frequency. Then, by adjusting the operation order among the error estimation coefficient, modulation function and input signal in the calibration loop, further, the order of correlation and modulation in the error estimation module, the complexity of the proposed calibration algorithm is greatly reduced and it will not increase with the number of channels of TIADC. What's more, the hardware consumption of filters in calibration algorithm is greatly reduced by introducing a CSD (Canonical Signed Digit) coding technique based on Horner's rule and sub-expression sharing. Applied to a four-channel 14bit 560MHz TIADC system, with input signal at 75.6MHz, the FPGA verification results show that, after calibration, the spurious-free dynamic range (SFDR) improves from 33.47dB to 99.81dB and signal-to-noise distortion ratio (SNDR) increases from 30.15dB to 81.89dB.

  • Study on Wear Debris Distribution and Performance Degradation in Low Frequency Fretting Wear of Electrical Connector

    Yanyan LUO  Jingzhao AN  Jingyuan SU  Zhaopan ZHANG  Yaxin DUAN  

     
    PAPER-Electromechanical Devices and Components

      Pubricized:
    2022/10/13
      Vol:
    E106-C No:3
      Page(s):
    93-102

    Aiming at the problem of the deterioration of the contact performance caused by the wear debris generated during the fretting wear of the electrical connector, low-frequency fretting wear experiments were carried out on the contacts of electrical connectors, the accumulation and distribution of the wear debris were detected by the electrical capacitance tomography technology; the influence of fretting cycles, vibration direction, vibration frequency and vibration amplitude on the accumulation and distribution of wear debris were analyzed; the correlation between characteristic value of wear debris and contact resistance value was studied, and a performance degradation model based on the accumulation and distribution of wear debris was built. The results show that fretting wear and performance degradation are the most serious in axial vibration; the characteristic value of wear debris and contact resistance are positively correlated with the fretting cycles, vibration frequency and vibration amplitude; there is a strong correlation between the sum of characteristic value of wear debris and the contact resistance value; the prediction error of ABC-SVR model of fretting wear performance degradation of electrical connectors constructed by the characteristic value of wear debris is less than 6%. Therefore, the characteristic value of wear debris in contact subareas can quantitatively describe the degree of fretting wear and the process of performance degradation.

  • Analysis of Optical Resonator Constructed by Two-Dimensional MDM Plasmonic Waveguide

    Yoshihiro NAKA  Masahiko NISHIMOTO  Mitsuhiro YOKOTA  

     
    BRIEF PAPER-Electromagnetic Theory

      Pubricized:
    2022/09/08
      Vol:
    E106-C No:3
      Page(s):
    103-106

    An efficient bent waveguide and an optical power splitter with a resonator constructed by a metal-dielectric-metal plasmonic waveguide have been analyzed. The method of solution is the finite difference time domain (FD-TD) method with the piecewise linear recursive convolution (PLRC) method. The resonator can be realized by utilizing impedance mismatch at the connection between a narrow waveguide and an input/output waveguide. Numerical results for the bent waveguide show that transmission bands can be controlled by adjusting the length of the narrow waveguide. We have also shown that the optical power of the power splitter is entirely distributed into the output waveguide at the resonant wavelength and its distribution ratio can be controlled.

  • Bending Loss Analysis of Chalcogenide Glass Channel Waveguides for Mid-Infrared Astrophotonic Devices Open Access

    Takashi YASUI  Jun-ichiro SUGISAKA  Koichi HIRAYAMA  

     
    BRIEF PAPER-Optoelectronics

      Pubricized:
    2022/08/25
      Vol:
    E106-C No:3
      Page(s):
    107-110

    In this study, the bending losses of chalcogenide glass channel optical waveguides consisting of an As2Se3 core and an As2S3 lower cladding layer were numerically evaluated across the astronomical N-band, which is the mid-infrared spectral range between the 8 µm and 12 µm wavelengths. The results reveal the design rules for bent waveguides in mid-infrared astrophotonic devices.

  • DAG-Pathwidth: Graph Algorithmic Analyses of DAG-Type Blockchain Networks

    Shoji KASAHARA  Jun KAWAHARA  Shin-ichi MINATO  Jumpei MORI  

     
    PAPER

      Pubricized:
    2022/12/22
      Vol:
    E106-D No:3
      Page(s):
    272-283

    This paper analyzes a blockchain network forming a directed acyclic graph (DAG), called a DAG-type blockchain, from the viewpoint of graph algorithm theory. To use a DAG-type blockchain, NP-hard graph optimization problems on the DAG are required to be solved. Although various problems for undirected and directed graphs can be efficiently solved by using the notions of graph parameters, these currently known parameters are meaningless for DAGs, which implies that it is hopeless to design efficient algorithms based on the parameters for such problems. In this work, we propose a novel graph parameter for directed graphs called a DAG-pathwidth, which represents the closeness to a directed path. This is an extension of the pathwidth, a well-known graph parameter for undirected graphs. We analyze the features of the DAG-pathwidth and prove that computing the DAG-pathwidth of a DAG (directed graph in general) is NP-complete. Finally, we propose an efficient algorithm for a variant of the maximum k-independent set problem for the DAG-type blockchain when the DAG-pathwidth of the input graph is small.

  • A Subclass of Mu-Calculus with the Freeze Quantifier Equivalent to Register Automata

    Yoshiaki TAKATA  Akira ONISHI  Ryoma SENDA  Hiroyuki SEKI  

     
    PAPER

      Pubricized:
    2022/10/25
      Vol:
    E106-D No:3
      Page(s):
    294-302

    Register automaton (RA) is an extension of finite automaton by adding registers storing data values. RA has good properties such as the decidability of the membership and emptiness problems. Linear temporal logic with the freeze quantifier (LTL↓) proposed by Demri and Lazić is a counterpart of RA. However, the expressive power of LTL↓ is too high to be applied to automatic verification. In this paper, we propose a subclass of modal µ-calculus with the freeze quantifier, which has the same expressive power as RA. Since a conjunction ψ1 ∧ ψ2 in a general LTL↓ formula cannot be simulated by RA, the proposed subclass prohibits at least one of ψ1 and ψ2 from containing the freeze quantifier or a temporal operator other than X (next). Since the obtained subclass of LTL↓ does not have the ability to represent a cycle in RA, we adopt µ-calculus over the subclass of LTL↓, which allows recursive definition of temporal formulas. We provide equivalent translations from the proposed subclass of µ-calculus to RA and vice versa and prove their correctness.

  • Weighted Multiple Context-Free Grammars

    Yusuke INOUE  Kenji HASHIMOTO  Hiroyuki SEKI  

     
    PAPER

      Pubricized:
    2022/10/14
      Vol:
    E106-D No:3
      Page(s):
    309-318

    Multiple context-free grammar (MCFG) is an extension of context-free grammar (CFG), which generates tuples of words. The expressive power of MCFG is between CFG and context-sensitive grammar while MCFG inherits good properties of CFG. In this paper, we introduce weighted multiple context-free grammar (WMCFG) as a quantitative extension of MCFG. Then we investigate properties of WMCFG such as polynomial-time computability of basic problems, its closure property and expressive power.

  • An Interactive and Reductive Graph Processing Library for Edge Computing in Smart Society

    Jun ZHOU  Masaaki KONDO  

     
    PAPER

      Pubricized:
    2022/11/07
      Vol:
    E106-D No:3
      Page(s):
    319-327

    Due to the limitations of cloud computing on latency, bandwidth and data confidentiality, edge computing has emerged as a novel location-aware paradigm to provide them with more processing capacity to improve the computing performance and quality of service (QoS) in several typical domains of human activity in smart society, such as social networks, medical diagnosis, telecommunications, recommendation systems, internal threat detection, transports, Internet of Things (IoT), etc. These application domains often handle a vast collection of entities with various relationships, which can be naturally represented by the graph data structure. Graph processing is a powerful tool to model and optimize complex problems in which the graph-based data is involved. In view of the relatively insufficient resource provisioning of the portable terminals, in this paper, for the first time to our knowledge, we propose an interactive and reductive graph processing library (GPL) for edge computing in smart society at low overhead. Experimental evaluation is conducted to indicate that the proposed GPL is more user-friendly and highly competitive compared with other established systems, such as igraph, NetworKit and NetworkX, based on different graph datasets over a variety of popular algorithms.

  • Calculation Solitaire is NP-Complete

    Chuzo IWAMOTO  Tatsuya IDE  

     
    LETTER

      Pubricized:
    2022/10/31
      Vol:
    E106-D No:3
      Page(s):
    328-332

    Calculation is a solitaire card game with a standard 52-card deck. Initially, cards A, 2, 3, and 4 of any suit are laid out as four foundations. The remaining 48 cards are piled up as the stock, and there are four empty tableau piles. The purpose of the game is to move all cards of the stock to foundations. The foundation starting with A is to be built up in sequence from an ace to a king. The other foundations are similarly built up, but by twos, threes, and fours from 2, 3, and 4 until a king is reached. Here, a card of rank i may be used as a card of rank i + 13j for j ∈ {0, 1, 2, 3}. During the game, the player moves (i) the top card of the stock either onto a foundation or to the top of a tableau pile, or (ii) the top card of a tableau pile onto a foundation. We prove that the generalized version of Calculation Solitaire is NP-complete.

821-840hit(30728hit)