The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Z(5900hit)

2181-2200hit(5900hit)

  • Proposal of High Performance 1.55 µm Quantum Dot Heterostructure Laser Using InN

    Md. Mottaleb HOSSAIN  Md. Abdullah-AL HUMAYUN  Md. Tanvir HASAN  Ashraful Ghani BHUIYAN  Akihiro HASHIMOTO  Akio YAMAMOTO  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E95-C No:2
      Page(s):
    255-261

    This paper reports on a theoretical study and modeling of a 1.55 µm quantum dot heterostructure laser using InN as a promising candidate for the first time. Details of design and theoretical analysis of probability distribution of the optical transition energy, threshold current density, modal gain, and differential quantum efficiency are presented considering a single layer of quantum dots. Dependence of threshold current density on the RMS value of quantum dot size fluctuations and the cavity length is studied. A low threshold current density of ∼51 Acm-2 is achieved at room temperature for a cavity length of 640 µm. An external differential efficiency of ∼65% and a modal gain of ∼12.5 cm-1 are obtained for the proposed structure. The results indicate that the InN based quantum dot laser is a promising one for the optical communication system.

  • QDFA: Query-Dependent Feature Aggregation for Medical Image Retrieval

    Yonggang HUANG  Dianfu MA  Jun ZHANG  Yongwang ZHAO  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E95-D No:1
      Page(s):
    275-279

    We propose a novel query-dependent feature aggregation (QDFA) method for medical image retrieval. The QDFA method can learn an optimal feature aggregation function for a multi-example query, which takes into account multiple features and multiple examples with different importance. The experiments demonstrate that the QDFA method outperforms three other feature aggregation methods.

  • Delay Attack-Resilient Clock Synchronization for Wireless Sensor Networks

    Eui-Jik KIM  Jeongsik IN  Sungkwan YOUM  Chul-Hee KANG  

     
    LETTER-Privacy

      Vol:
    E95-D No:1
      Page(s):
    188-191

    This paper presents the design and performance evaluation of a delay attack-resilient clock synchronization scheme (abbreviated to DARCS) for wireless sensor networks. In order to provide both synchronization accuracy and robustness, we propose a novel three-way handshake-based protocol, which completely excludes non-deterministic factors such as random backoff durations and unexpected hardware interrupts in a software manner and, in this way, the node can accurately estimate the relative clock offset and the end-to-end delay between a pair of nodes. Consequently, DARCS makes it possible to correct time synchronization errors as well as to detect delay attacks precisely. The simulation results show that DARCS achieves a higher synchronization accuracy and is more resilient to delay attacks than the other popular time synchronization schemes.

  • Study on Network Vulnerability Identification and Equilibrated Network Immunization Strategy

    Chi GUO  Li-na WANG  Xiao-ying ZHANG  

     
    PAPER-Trust

      Vol:
    E95-D No:1
      Page(s):
    46-55

    Network structure has a great impact both on hazard spread and network immunization. The vulnerability of the network node is associated with each other, assortative or disassortative. Firstly, an algorithm for vulnerability relevance clustering is proposed to show that the vulnerability community phenomenon is obviously existent in complex networks. On this basis, next, a new indicator called network “hyper-betweenness” is given for evaluating the vulnerability of network node. Network hyper-betweenness can reflect the importance of network node in hazard spread better. Finally, the dynamic stochastic process of hazard spread is simulated based on Monte-Carlo sampling method and a two-player, non-cooperative, constant-sum game model is designed to obtain an equilibrated network immunization strategy.

  • Reduction Processing of the Position Estimation Error Using Transmitted Directivity Information

    Hiroyuki HATANO  Tomoharu MIZUTANI  Yoshihiko KUWAHARA  

     
    PAPER-ITS

      Vol:
    E95-A No:1
      Page(s):
    286-295

    We consider the position estimation system for targets which exist in near wide area. The system has multiple sensors and estimates the position with multiple receivers. In the past, if receivers were arranged on a straight line, the large position error in the same direction of the line is generated. In order to reduce the error, we propose a novel estimation algorithm using transmitter's directivity information. Our system use directional emission made by an array of antennas in a transmitter. In this paper, the error characteristic which should be solved is introduced firstly. After that, our algorithm is presented. Finally the performance of the error reduction is shown by computer simulations. And we also confirm the reduction by experimental trials. The results indicate good reduction of the error.

  • Privacy-Enhancing Queries in Personalized Search with Untrusted Service Providers Open Access

    Yunsang OH  Hyoungshick KIM  Takashi OBI  

     
    PAPER-Privacy

      Vol:
    E95-D No:1
      Page(s):
    143-151

    For personalized search, a user must provide her personal information. However, this sometimes includes the user's sensitive information about individuals such as health condition and private lifestyle. It is not sufficient just to protect the communication channel between user and service provider. Unfortunately, the collected personal data can potentially be misused for the service providers' commercial advantage (e.g. for advertising methods to target potential consumers). Our aim here is to protect user privacy by filtering out the sensitive information exposed from a user's query input at the system level. We propose a framework by introducing the concept of query generalizer. Query generalizer is a middleware that takes a query for personalized search, modifies the query to hide user's sensitive personal information adaptively depending on the user's privacy policy, and then forwards the modified query to the service provider. Our experimental results show that the best-performing query generalization method is capable of achieving a low traffic overhead within a reasonable range of user privacy. The increased traffic overhead varied from 1.0 to 3.3 times compared to the original query.

  • A Discrete Particle Swarm Optimizer for Multi-Solution Problems

    Masafumi KUBOTA  Toshimichi SAITO  

     
    LETTER-Nonlinear Problems

      Vol:
    E95-A No:1
      Page(s):
    406-409

    This letter studies a nesting discrete particle swarm optimizer for multi-solution problems. The algorithm operates in discrete search space and consists of two stages. The first stage is global search in rough lattice points for constructing local sub-regions each of which includes one target solution. The second stage is local search where the algorithm operates in parallel in fine lattice points of local subspaces and tires to find all the approximate solutions within a criterion. We then propose an application to finding multiple fixed points in nonlinear dynamical systems and investigate the algorithm efficiency.

  • QR Decomposition-Based Antenna Selection for Spatial Multiplexing UWB Systems with Zero-Forcing Detectors Followed by Rake Combiners

    Sangchoon KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:1
      Page(s):
    337-340

    This letter presents a criterion for selecting a transmit antenna subset when ZF detectors followed by Rake combiners are employed for spatial multiplexing (SM) ultra-wideband (UWB) multiple input multiple output (MIMO) systems. The presented criterion is based on the largest minimum post-processing signal to interference plus noise ratio of the multiplexed streams, which is obtained on the basis of QR decomposition. Simulation results show that the proposed antenna selection algorithm considerably improves the BER performance of the SM UWB MIMO systems when the number of multipath diversity branches is not so large and thus offers diversity advantages on a log-normal multipath fading channel.

  • Target Position Estimation Algorithm under Corrupted Measurement Data for Radar Network Systems

    Hiroyuki HATANO  Tomoharu MIZUTANI  Kazuya SUGIYAMA  Yoshihiko KUWAHARA  

     
    LETTER-ITS

      Vol:
    E95-A No:1
      Page(s):
    317-321

    Radar networks show an interesting potential for safety and comfortable applications such as short-range automotive monitoring system or indoor monitoring. This paper presents our novel estimation algorithm of a target position. Especially we evaluate the performance about estimation accuracy and resistance to ghost targets under multipath environment. In above applications, the robust estimation is needed because the receivers tend to output corrupted measurement data. The corrupted data are mostly generated by multipath, sensitivity of receivers. As a result of computer simulations, our algorithm has fine accuracy and robust detections compared with a popular trilateration algorithm.

  • A Basic Fuzzy-Estimation Theory for Available Operation of Extremely Complicated Large-Scale Network Systems

    Kazuo HORIUCHI  

     
    PAPER-Circuit Theory

      Vol:
    E95-A No:1
      Page(s):
    338-345

    In this paper, we shall describe a basic fuzzy-estimation theory based on the concept of set-valued operators, suitable for available operation of extremely complicated large-scale network systems. Fundamental conditions for availability of system behaviors of such network systems are clarified in a form of β-level fixed point theorem for system of fuzzy-set-valued operators. Here, the proof of this theorem is accomplished by the concept of Hausdorff's ball measure of non-compactness introduced into the Banach space.

  • Utility Maximization with Packet Collision Constraint in Cognitive Radio Networks

    Nguyen H. TRAN  Choong Seon HONG  Sungwon LEE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E95-B No:1
      Page(s):
    321-324

    We study joint rate control and resource allocation with a packet collision constraint that maximizes the total utility of secondary users in cognitive radio networks. We formulate and decouple the original optimization problem into separable subproblems and then develop an algorithm that converges to optimal rate control and resource allocation. The proposed algorithm can operate on different time-scales to reduce the amortized time complexity.

  • Colorization Based Image Coding by Using Local Correlation between Luminance and Chrominance

    Yoshitaka INOUE  Takamichi MIYATA  Yoshinori SAKAI  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E95-D No:1
      Page(s):
    247-255

    Recently, a novel approach to color image compression based on colorization has been presented. The conventional method for colorization-based image coding tends to lose the local oscillation of chrominance components that the original images had. A large number of color assignments is required to restore these oscillations. On the other hand, previous studies suggest that an oscillation of a chrominance component correlates with the oscillation of a corresponding luminance component. In this paper, we propose a new colorization-based image coding method that utilizes the local correlation between texture components of luminance and chrominance. These texture components are obtained by a total variation regularized energy minimization method. The local correlation relationships are approximated by linear functions, and their coefficients are extracted by an optimization method. This key idea enables us to represent the oscillations of chrominance components by using only a few pieces of information. Experimental results showed that our method can restore the local oscillation and code images more efficiently than the conventional method, JPEG, or JPEG2000 at a high compression rate.

  • Effectiveness of Short-Range MIMO Using Dual-Polarized Antenna

    Ken HIRAGA  Tomohiro SEKI  Kentaro NISHIMORI  Kazuhiro UEHARA  

     
    PAPER-Radio Systems

      Vol:
    E95-B No:1
      Page(s):
    87-96

    Short-range Multiple-Input-Multiple-Output (SR-MIMO) transmission is an effective technique for achieving high-speed and short-range wireless communication. With this technique, however, the optimum aperture size of array antennas grows when the transmission distance is increased. Thus, antenna miniaturization is an important issue in SR-MIMO. In this paper, we clarify the effectiveness of using dual-polarized planar antennas as a means of miniaturizing SR-MIMO array antennas by measurements and analysis of MIMO transmission characteristics. We found that even in SR-MIMO transmission, the use of dual-polarized transmission enables higher channel capacity. Dual-polarized antennas can reduce by two thirds the array area that is needed to obtain the same channel capacity. For a transmission distance of two wavelengths, the use of a dual-polarized antenna improved the channel capacity by 26 bit/s/Hz while maintaining the same number of transmitters and receivers and the same antenna aperture size. Moreover, dual-polarized SR-MIMO has a further benefit when zero-forcing (ZF) reception without transmit beamforming is adopted, i.e., it effectively simplifies hardware configuration because it can reduce spatial correlation even in narrow element spacing. In this work, we confirmed that the application of dual-polarization to SR-MIMO is an effective way to both increase channel capacity and enhance transceiver simplification.

  • Sub-Linear Size Traceable Ring Signatures without Random Oracles

    Eiichiro FUJISAKI  

     
    PAPER-Authentication

      Vol:
    E95-A No:1
      Page(s):
    151-166

    Traceable ring signatures, proposed at PKC'07, are a variant of ring signatures, which allow a signer to anonymously sign a message with a tag behind a ring, i.e., a group of users chosen by the signer, unless he signs two messages with the same tag. However, if a signer signs twice on the same tag, the two signatures will be linked and the identity of the signer will be revealed when the two signed messages are different. Traceable ring signatures can be applied to anonymous write-in voting without any special voting authority and electronic coupon services. The previous traceable ring signature scheme relies on random oracles at its security and the signature size is linear in the number of ring members. This paper proposes the first secure traceable ring signature schemes without random oracles in the common reference string model. In addition, the proposed schemes have a signature size of O(), where N is the number of users in the ring.

  • A Note on the Pairing Computation Using Normalized Miller Functions

    Naoki OGURA  Shigenori UCHIYAMA  Naoki KANAYAMA  Eiji OKAMOTO  

     
    PAPER-Mathematics

      Vol:
    E95-A No:1
      Page(s):
    196-203

    This paper considers the normalization of Miller functions for computing “point-evaluation” pairings on an elliptic curve E over a finite field Fq, where the characteristic of Fq is neither 2 nor 3. It is shown that the normalized Miller functions for computing point-evaluation pairings on G2G1 when (i) the embedding degree k is even, or (ii) 3|k and E/Fq(q ≡ (1 mod 3)) is a curve of the form Y2=X3+b. Thus, there is no need to consider the normalization for computing pairings on many pairing-friendly elliptic curves.

  • Combinatorial Auction-Based Marketplace Mechanism for Cloud Service Reservation

    Ikki FUJIWARA  Kento AIDA  Isao ONO  

     
    PAPER-Computer System

      Vol:
    E95-D No:1
      Page(s):
    192-204

    This paper proposes a combinatorial auction-based marketplace mechanism for cloud computing services, which allows users to reserve arbitrary combination of services at requested timeslots, prices and quality of service. The proposed mechanism helps enterprise users build workflow applications in a cloud computing environment, specifically on the platform-as-a-service, where the users need to compose multiple types of services at different timeslots. The proposed marketplace mechanism consists of a forward market for an advance reservation and a spot market for immediate allocation of services. Each market employs mixed integer programming to enforce a Pareto optimum allocation with maximized social economic welfare, as well as double-sided auction design to encourage both users and providers to compete for buying and selling the services. The evaluation results show that (1) the proposed forward/combinatorial mechanism outperforms other non-combinatorial and/or non-reservation (spot) mechanisms in both user-centric rationality and global efficiency, and (2) running both a forward market and a spot market improves utilization without disturbing advance reservations depending on the provider's policy.

  • High-Accuracy Sub-Pixel Registration for Noisy Images Based on Phase Correlation

    Bei HE  Guijin WANG  Xinggang LIN  Chenbo SHI  Chunxiao LIU  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E94-D No:12
      Page(s):
    2541-2544

    This paper proposes a high-accuracy sub-pixel registration framework based on phase correlation for noisy images. First we introduce a denoising module, where the edge-preserving filter is adopted. This strategy not only filters off the noise but also preserves most of the original image signal. A confidence-weighted optimization module is then proposed to fit the linear phase plane discriminately and to achieve sub-pixel shifts. Experiments demonstrate the effectiveness of the combination of our modules and improvements of the accuracy and robustness against noise compared to other sub-pixel phase correlation methods in the Fourier domain.

  • Adaptive Spatial Other Cell Interference Cancelation for Multiuser Multi-Cell Cooperating System

    Jin-Hee LEE  Young-Chai KO  

     
    PAPER

      Vol:
    E94-B No:12
      Page(s):
    3232-3238

    In multi-cell wireless systems with insufficient frequency reuse, the downlink transmission suffers from other cell interference (OCI). The cooperative transmission among multiple base stations is an effective way to mitigate OCI and increase the system sum rate. An adaptive scheme for serving one user in each cell was proposed in [1]. In this paper, we generalize the scheme in [1] by serving more than one user in each cell with adaptive OCI cancelation. Based on our derived statistics of a user for different transmission strategies, we propose a low complexity transmission scheme that achieves near-maximal ergodic sum rate. Through numerical examples, we show that the system sum rate can be improved by selecting the appropriate transmission strategy combination adaptively. As a result, our proposed system can explore spatial multiplexing gain without additional power and thus improves the system sum rate significantly.

  • Distributed Cooperative Multicell Beamforming Based on a Viewpoint of Layered Channel

    Jiamin LI  Dongming WANG  Pengcheng ZHU  Lan TANG  Xiaohu YOU  

     
    PAPER

      Vol:
    E94-B No:12
      Page(s):
    3225-3231

    In this paper, a distributed cooperative multicell beamforming algorithm is proposed, and a detail analysis and solving method for instantaneous and statistical channel state information (CSI) are presented. Firstly, an improved distributed iterative beamforming algorithm is proposed for the multiple-input single-output interference channel (MISO IC) scenario which chooses virtual signal-to-interference-and-noise (SINR) as decision criterion to initialize and then iteratively solves the constrained optimization problem of maximizing the virtual SINR for a given level of generated interference to other users. Then, the algorithm is generalized to the multicell date sharing scenario with a heuristics power allocation scheme based on a viewpoint of the layered channel. Finally, the performance is illustrated through numerical simulations.

  • Partially Non-orthogonal Block Diagonalization-Based Precoding in Downlink Multiuser MIMO with Limited Channel State Information Feedback

    Yuki TAJIKA  Hidekazu TAOKA  Kenichi HIGUCHI  

     
    PAPER

      Vol:
    E94-B No:12
      Page(s):
    3280-3288

    This paper investigates a precoding method in downlink multiuser multiple-input multiple-output (MIMO) transmission with multiple base station (BS) cooperation, where each user device basically feeds back the instantaneous channel state information (CSI) to only the nearest BS, but the users near the cell edge additionally feedback the instantaneous CSI to the second nearest BS among the cooperating BSs. Our precoding method is categorized as a form of multi-cell processing (MCP) [5], in which the transmission information to a user is shared by the cooperating BSs in order to utilize fully the degrees of freedom of the spatial channel, and is based on block diagonalization of the channel matrix. However, since some elements of the channel matrix are unknown, we allow partially non-orthogonal transmission. More specifically, we allow inter-user interference to users with limited instantaneous CSI feedback from the channel where the instantaneous CSIs of those users are not obtained at the BSs. The other sources of inter-user interference are set to zero based on the block diagonalization of the channel matrix. The proposed method more efficiently utilizes the degrees of freedom of the spatial channel compared to the case with full orthogonal transmission at the cost of increased inter-user interference. Simulation results show the effectiveness of the proposed method compared to the conventional approaches, which can accommodate the partial CSI feedback scenario, from the viewpoints of the required transmission power and achievable throughput.

2181-2200hit(5900hit)