The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Z(5900hit)

821-840hit(5900hit)

  • Experimental Tests of a Prototype of IMU-Based Closed-Loop Fuzzy Control System for Mobile FES Cycling with Pedaling Wheelchair

    Takashi WATANABE  Takumi TADANO  

     
    PAPER-Rehabilitation Engineering and Assistive Technology

      Pubricized:
    2018/03/30
      Vol:
    E101-D No:7
      Page(s):
    1906-1914

    Rehabilitation training with pedaling wheelchair in combination with functional electrical stimulation (FES) can be effective for decreasing the risk of falling significantly. Automatic adjustment of cycling speed and making a turn without standstill has been desired for practical applications of the training with mobile FES cycling. This study aimed at developing closed-loop control system of cycling speed with the pedaling wheelchair. Considering clinical practical use with no requirement of extensive modifications of the wheelchair, measurement method of cycling speed with inertial motion measurement units (IMUs) was introduced, and fuzzy controller for adjusting stimulation intensity to regulate cycling speed was designed. The developed prototype of closed-loop FES control system achieved appropriately cycling speed for the different target speeds in most of control trials with neurologically intact subjects. In addition, all the control trials of low speed cycling including U-turn achieved maintaining the target speed without standstill. Cycling distance and cycling time increased with the closed-loop control of low cycling speed compensating decreasing of cycling speed caused by muscle fatigue. From these results, the developed closed-loop fuzzy FES control system was suggested to work reliably in mobile FES cycling.

  • Refactoring Opportunity Identification Methodology for Removing Long Method Smells and Improving Code Analyzability

    Panita MEANANEATRA  Songsakdi RONGVIRIYAPANISH  Taweesup APIWATTANAPONG  

     
    PAPER

      Pubricized:
    2018/04/26
      Vol:
    E101-D No:7
      Page(s):
    1766-1779

    An important step for improving software analyzability is applying refactorings during the maintenance phase to remove bad smells, especially the long method bad smell. Long method bad smell occurs most frequently and is a root cause of other bad smells. However, no research has proposed an approach to repeating refactoring identification, suggestion, and application until all long method bad smells have been removed completely without reducing software analyzability. This paper proposes an effective approach to identifying refactoring opportunities and suggesting an effective refactoring set for complete removal of long method bad smell without reducing code analyzability. This approach, called the long method remover or LMR, uses refactoring enabling conditions based on program analysis and code metrics to identify four refactoring techniques and uses a technique embedded in JDeodorant to identify extract method. For effective refactoring set suggestion, LMR uses two criteria: code analyzability level and the number of statements impacted by the refactorings. LMR also uses side effect analysis to ensure behavior preservation. To evaluate LMR, we apply it to the core package of a real world java application. Our evaluation criteria are 1) the preservation of code functionality, 2) the removal rate of long method characteristics, and 3) the improvement on analyzability. The result showed that the methods that apply suggested refactoring sets can completely remove long method bad smell, still have behavior preservation, and have not decreased analyzability. It is concluded that LMR meets the objectives in almost all classes. We also discussed the issues we found during evaluation as lesson learned.

  • Robust Human-Computer Interaction for Unstable Camera Systems

    Hao ZHU  Qing YOU  Wenjie CHEN  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2018/03/26
      Vol:
    E101-D No:7
      Page(s):
    1915-1923

    A lot of vision systems have been embedded in devices around us, like mobile phones, vehicles and UAVs. Many of them still need interactive operations of human users. However, specifying accurate object information could be a challenging task due to video jitters caused by camera shakes and target motions. In this paper, we first collect practical hand drawn bounding boxes on real-life videos which are captured by hand-held cameras and UAV-based cameras. We give a deep look into human-computer interactive operations on unstable images. The collected data shows that human input suffers heavy deviations which are harmful to interaction accuracy. To achieve robust interactions on unstable platforms, we propose a target-focused video stabilization method which utilizes a proposal-based object detector and a tracking-based motion estimation component. This method starts with a single manual click and outputs stabilized video stream in which the specified target stays almost stationary. Our method removes not only camera jitters but also target motions simultaneously, therefore offering an comfortable environment for users to do further interactive operations. The experiments demonstrate that the proposed method effectively eliminates image vibrations and significantly increases human input accuracy.

  • Novel Secure Communication Based on Chaos Synchronization

    Bo WANG  Xiaohua ZHANG  Xiucheng DONG  

     
    LETTER-Nonlinear Problems

      Vol:
    E101-A No:7
      Page(s):
    1132-1135

    In this paper, the problem on secure communication based on chaos synchronization is investigated. The dual channel information transmitting technology is proposed to increase the security of secure communication system. Based on chaos synchronization, a new digital secure communication scheme is presented for a class of master-slave systems. Finally some numerical simulation examples are given to demonstrate the effectiveness of the given results.

  • Reliable Position Estimation by Parallelized Processing in Kinematic Positioning for Single Frequency GNSS Receiver

    Hiromi IN  Hiroyuki HATANO  Masahiro FUJII  Atsushi ITO  Yu WATANABE  

     
    PAPER-Intelligent Transport System

      Vol:
    E101-A No:7
      Page(s):
    1083-1091

    Location information is meaningful information for future ITS (Intelligent Transport Systems) world. Especially, the accuracy of the information is required because the accuracy decides the quality of ITS services. For realization of high precision positioning, Kinematic positioning technique has been attracting attention. The Kinematic positioning requires the configuration of many positioning parameters. However, the configuration is difficult because optimal parameter differs according to user's environment. In this paper, we will propose an estimation method of optimal parameter according to the environment. Further, we will propose an elimination method of unreliable positioning results. Hereby, we can acquire extensively only the reliable positioning results. By using the actual vehicle traveling data, the ability and the applicable range of the proposed method will be shown. The result will show that our proposed method improves the acquision rate of reliable positioning results and mitigates the acquision rate of the unreliable positioning results.

  • On Maximizing the Lifetime of Wireless Sensor Networks in 3D Vegetation-Covered Fields

    Wenjie YU  Xunbo LI  Zhi ZENG  Xiang LI  Jian LIU  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2018/03/01
      Vol:
    E101-D No:6
      Page(s):
    1677-1681

    In this paper, the problem of lifetime extension of wireless sensor networks (WSNs) with redundant sensor nodes deployed in 3D vegetation-covered fields is modeled, which includes building communication models, network model and energy model. Generally, such a problem cannot be solved by a conventional method directly. Here we propose an Artificial Bee Colony (ABC) based optimal grouping algorithm (ABC-OG) to solve it. The main contribution of the algorithm is to find the optimal number of feasible subsets (FSs) of WSN and assign them to work in rotation. It is verified that reasonably grouping sensors into FSs can average the network energy consumption and prolong the lifetime of the network. In order to further verify the effectiveness of ABC-OG, two other algorithms are included for comparison. The experimental results show that the proposed ABC-OG algorithm provides better optimization performance.

  • Joint Wireless Information and Energy Transfer in Two-Way Relay Channels

    Xiaofeng LING  Rui WANG  Ping WANG  Yu ZHU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/12/06
      Vol:
    E101-B No:6
      Page(s):
    1476-1484

    In this paper, we study simultaneous wireless information and power transfer (SWIPT) in two-way relay channels where two users exchange information with each other via a multi-antenna relay node. The signals forwarded by the relay node are also used to supply the power to two users. We formulate a max-min optimization problem aiming to maximize the minimum harvested energy between two users to achieve fairness. We jointly optimize the relay beamforming matrix and allocating powers at the two users subject to the quality of service (QoS) constraints. To be specific, we consider the amplify-and-forward (AF) relay strategy and the time splitting SWIPT strategy. To this end, we propose two different time splitting protocols to enable relay to supply power to two users. To solve the non-convex joint optimization problem, we propose to split the original optimization problem into two subproblems and solving them iteratively to obtain the final solution. It is shown that the first subproblem dealing with the beamforming matrix can be optimally solved by using the technique of relaxed semidefinite programming (SDR), and the second subproblem, which deals with the power allocation, can be solved via linear programming. The performance comparison of two schemes as well as the one-way relaying scheme are provided and the effectiveness of the proposed schemes is verified.

  • BackAssist: Augmenting Mobile Touch Manipulation with Back-of-Device Assistance

    Liang CHEN  Dongyi CHEN  Xiao CHEN  

     
    LETTER-Computer System

      Pubricized:
    2018/03/16
      Vol:
    E101-D No:6
      Page(s):
    1682-1685

    Operations, such as text entry and zooming, are simple and frequently used on mobile touch devices. However, these operations are far from being perfectly supported. In this paper, we present our prototype, BackAssist, which takes advantage of back-of-device input to augment front-of-device touch interaction. Furthermore, we present the results of a user study to evaluate whether users can master the back-of-device control of BackAssist or not. The results show that the back-of-device control can be easily grasped and used by ordinary smart phone users. Finally, we present two BackAssist supported applications - a virtual keyboard application and a map application. Users who tried out the two applications give positive feedback to the BackAssist supported augmentation.

  • Design of Asymmetric ZPC Sequences with Multiple Subsets via Interleaving Known ZPC Sequences

    Xiaoli ZENG  Longye WANG  Hong WEN  Gaoyuan ZHANG  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E101-A No:6
      Page(s):
    982-987

    By interleaving known Z-periodic complementary (ZPC) sequence set, a new ZPC sequence set is constructed with multiple ZPC sequence subsets based on an orthogonal matrix in this work. For this novel ZPC sequence set, which refer to as asymmetric ZPC (AZPC) sequence set, its inter-subset zero cross-correlation zone (ZCCZ) is larger than intra-subset zero correlation zone (ZCZ). In particular, if select a periodic perfect complementary (PC) sequence or PC sequence set and a discrete Fourier transform (DFT) matrix, the resultant sequence set is an inter-group complementary (IGC) sequence set. When a suitable shift sequence is chosen, the obtained IGC sequence set will be optimal in terms of the corresponding theoretical bound. Compared with the existing constructions of IGC sequence sets, the proposed method can provide not only flexible ZCZ width but also flexible choice of basic sequences, which works well in both synchronous and asynchronous operational modes. The proposed AZPC sequence sets are suitable for multiuser environments.

  • Requirement Modeling Language for the Dynamic Node Integration Problem of Telecommunication Network

    Yu NAKAYAMA  Kaoru SEZAKI  

     
    PAPER-Network

      Pubricized:
    2017/12/01
      Vol:
    E101-B No:6
      Page(s):
    1379-1387

    Efficiently locating nodes and allocating demand has been a significant problem for telecommunication network carriers. Most of location models focused on where to locate nodes and how to assign increasing demand with optical access networks. However, the population in industrialized countries will decline over the coming decades. Recent advance in the optical amplifier technology has enabled node integration; an excess telecommunication node is closed and integrated to another node. Node integration in low-demand areas will improve the efficiency of access networks in this approaching age of depopulation. A dynamic node integration problem (DNIP) has been developed to organize the optimal plan for node integration. The problem of the DNIP was that it cannot consider the requirements of network carriers. In actual situations, network carriers often want to specify the way each node is managed, regardless of the mathematical optimality of the solution. This paper proposes a requirement modeling language (RML) for the DNIP, with which the requirements of network carriers can be described. The described statements are used to solve the DNIP, and consequently the calculated optimal solution always satisfies the requirements. The validity of the proposed method was evaluated with computer simulations in a case study.

  • An Approach for Virtual Network Function Deployment Based on Pooling in vEPC

    Quan YUAN  Hongbo TANG  Yu ZHAO  Xiaolei WANG  

     
    PAPER-Network

      Pubricized:
    2017/12/08
      Vol:
    E101-B No:6
      Page(s):
    1398-1410

    Network function virtualization improves the flexibility of infrastructure resource allocation but the application of commodity facilities arouses new challenges for systematic reliability. To meet the carrier-class reliability demanded from the 5G mobile core, several studies have tackled backup schemes for the virtual network function deployment. However, the existing backup schemes usually sacrifice the efficiency of resource allocation and prevent the sharing of infrastructure resources. To solve the dilemma of balancing the high level demands of reliability and resource allocation in mobile networks, this paper proposes an approach for the problem of pooling deployment of virtualized network functions in virtual EPC network. First, taking pooling of VNFs into account, we design a virtual network topology for virtual EPC. Second, a node-splitting algorithm is proposed to make best use of substrate network resources. Finally, we realize the dynamic adjustment of pooling across different domains. Compared to the conventional virtual topology design and mapping method (JTDM), this approach can achieve fine-grained management and overall scheduling of node resources; guarantee systematic reliability and optimize global view of network. It is proven by a network topology instance provided by SNDlib that the approach can reduce total resource cost of the virtual network and increase the ratio of request acceptance while satisfy the high-demand reliability of the system.

  • Compact Controlled Reception Pattern Antenna (CRPA) Array Based on Mu-Zero Resonance (MZR) Antenna

    Jae-Gon LEE  Taek-Sun KWON  Bo-Hee CHOI  Jeong-Hae LEE  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/12/20
      Vol:
    E101-B No:6
      Page(s):
    1427-1433

    In this paper, a compact controlled reception pattern antenna (CRPA) array based on a mu-zero resonance (MZR) antenna is proposed for a global positioning system (GPS). The MZR antenna can be minimized by designing structure based in mu-negative (MNG) transmission line. The MNG transmission line can be implemented by a gap structure for the series capacitance and a shorting via for a short-ended boundary condition. The CRPA array, which operates in L1 (1.57542GHz) and L2 (1.2276GHz) bands, is designed as a cylinder with a diameter and a height of 127mm (5 inches) and 20mm, respectively, and is composed of seven radiating elements. To design the compact CRPA array with high performance attributes such as an impedance matching (VSWR) value of less than 2, an isolation between array elements (<-12dB), an axial ratio (<5dB), and a circular polarization (CP) gain (>-1dBic: L1 band and >-3dBic: L2 band), we employ two orthogonal MZR antennas, a superstrate, and chip couplers. The performances of the CRPA antenna are verified and compared by an analytic analysis, a full-wave simulation, and measurements.

  • Counting Algorithms for Recognizable and Algebraic Series

    Bao Trung CHU  Kenji HASHIMOTO  Hiroyuki SEKI  

     
    PAPER-Formal Approaches

      Pubricized:
    2018/03/16
      Vol:
    E101-D No:6
      Page(s):
    1479-1490

    Formal series are a natural extension of formal languages by associating each word with a value called a coefficient or a weight. Among them, recognizable series and algebraic series can be regarded as extensions of regular languages and context-free languages, respectively. The coefficient of a word w can represent quantities such as the cost taken by an operation on w, the probability that w is emitted. One of the possible applications of formal series is the string counting in quantitative analysis of software. In this paper, we define the counting problems for formal series and propose algorithms for the problems. The membership problem for an automaton or a grammar corresponds to the problem of computing the coefficient of a given word in a given series. Accordingly, we define the counting problem for formal series in the following two ways. For a formal series S and a natural number d, we define CC(S,d) to be the sum of the coefficients of all the words of length d in S and SC(S,d) to be the number of words of length d that have non-zero coefficients in S. We show that for a given recognizable series S and a natural number d, CC(S,d) can be computed in O(η log d) time where η is an upper-bound of time needed for a single state-transition matrix operation, and if the state-transition matrices of S are commutative for multiplication, SC(S,d) can be computed in polynomial time of d. We extend the notions to tree series and discuss how to compute them efficiently. Also, we propose an algorithm that computes CC(S,d) in square time of d for an algebraic series S. We show the CPU time of the proposed algorithm for computing CC(S,d) for some context-free grammars as S, one of which represents the syntax of C language. To examine the applicability of the proposed algorithms to string counting for the vulnerability analysis, we also present results on string counting for Kaluza Benchmark.

  • More New Classes of Differentially 4-Uniform Permutations with Good Cryptographic Properties

    Jie PENG  Chik How TAN  Qichun WANG  Jianhua GAO  Haibin KAN  

     
    PAPER-Cryptography and Information Security

      Vol:
    E101-A No:6
      Page(s):
    945-952

    Research on permutation polynomials over the finite field F22k with significant cryptographical properties such as possibly low differential uniformity, possibly high nonlinearity and algebraic degree has attracted a lot of attention and made considerable progress in recent years. Once used as the substitution boxes (S-boxes) in the block ciphers with Substitution Permutation Network (SPN) structure, this kind of polynomials can have a good performance against the classical cryptographic analysis such as linear attacks, differential attacks and the higher order differential attacks. In this paper we put forward a new construction of differentially 4-uniformity permutations over F22k by modifying the inverse function on some specific subsets of the finite field. Compared with the previous similar works, there are several advantages of our new construction. One is that it can provide a very large number of Carlet-Charpin-Zinoviev equivalent classes of functions (increasing exponentially). Another advantage is that all the functions are explicitly constructed, and the polynomial forms are obtained for three subclasses. The third advantage is that the chosen subsets are very large, hence all the new functions are not close to the inverse function. Therefore, our construction may provide more choices for designing of S-boxes. Moreover, it has been checked by a software programm for k=3 that except for one special function, all the other functions in our construction are Carlet-Charpin-Zinoviev equivalent to the existing ones.

  • On Robust Approximate Feedback Linearization with Non-Trivial Diagonal Terms

    Ho-Lim CHOI  

     
    LETTER-Systems and Control

      Vol:
    E101-A No:6
      Page(s):
    971-973

    A problem of global stabilization of a class of approximately feedback linearized systems is considered. A new system structural feature is the presence of non-trivial diagonal terms along with nonlinearity, which has not been addressed by the previous control results. The stability analysis reveals a new relationship between the time-varying rates of system parameters and system nonlinearity along with our controller. Two examples are given for illustration.

  • Point of Gaze Estimation Using Corneal Surface Reflection and Omnidirectional Camera Image

    Taishi OGAWA  Atsushi NAKAZAWA  Toyoaki NISHIDA  

     
    PAPER-Machine Vision and its Applications

      Pubricized:
    2018/02/16
      Vol:
    E101-D No:5
      Page(s):
    1278-1287

    We present a human point of gaze estimation system using corneal surface reflection and omnidirectional image taken by spherical panorama cameras, which becomes popular recent years. Our system enables to find where a user is looking at only from an eye image in a 360° surrounding scene image, thus, does not need gaze mapping from partial scene images to a whole scene image that are necessary in conventional eye gaze tracking system. We first generate multiple perspective scene images from an omnidirectional (equirectangular) image and perform registration between the corneal reflection and perspective images using a corneal reflection-scene image registration technique. We then compute the point of gaze using a corneal imaging technique leveraged by a 3D eye model, and project the point to an omnidirectional image. The 3D eye pose is estimate by using the particle-filter-based tracking algorithm. In experiments, we evaluated the accuracy of the 3D eye pose estimation, robustness of registration and accuracy of PoG estimations using two indoor and five outdoor scenes, and found that gaze mapping error was 5.546 [deg] on average.

  • Forecasting Service Performance on the Basis of Temporal Information by the Conditional Restricted Boltzmann Machine

    Jiali YOU  Hanxing XUE  Yu ZHUO  Xin ZHANG  Jinlin WANG  

     
    PAPER-Network

      Pubricized:
    2017/11/10
      Vol:
    E101-B No:5
      Page(s):
    1210-1221

    Predicting the service performance of Internet applications is important in service selection, especially for video services. In order to design a predictor for forecasting video service performance in third-party application, two famous service providers in China, Iqiyi and Letv, are monitored and analyzed. The study highlights that the measured performance in the observation period is time-series data, and it has strong autocorrelation, which means it is predictable. In order to combine the temporal information and map the measured data to a proper feature space, the authors propose a predictor based on a Conditional Restricted Boltzmann Machine (CRBM), which can capture the potential temporal relationship of the historical information. Meanwhile, the measured data of different sources are combined to enhance the training process, which can enlarge the training size and avoid the over-fit problem. Experiments show that combining the measured results from different resolutions for a video can raise prediction performance, and the CRBM algorithm shows better prediction ability and more stable performance than the baseline algorithms.

  • A Novel Transmission Scheme for Polarization Dependent Loss Elimination in Dual-Polarized Satellite Systems

    Zhangkai LUO  Huali WANG  Kaijie ZHOU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E101-A No:5
      Page(s):
    872-877

    In this letter, a novel transmission scheme is proposed to eliminate the polarization dependent loss (PDL) effect in dual-polarized satellite systems. In fact, the PDL effect is the key problem that limits the performance of the systems based on the PM technique, while it is naturally eliminated in the proposed scheme since we transmit the two components of the polarized signal in turn in two symbol periods. Moreover, a simple and effective detection method based on the signal's power is proposed to distinguish the polarization characteristic of the transmit antenna. In addition, there is no requirement on the channel state information at the transmitter, which is popular in satellite systems. Finally, superiorities are validated by the theoretical analysis and simulation results in the dual-polarized satellite systems.

  • Reviving Identification Scheme Based on Isomorphism of Polynomials with Two Secrets: a Refined Theoretical and Practical Analysis

    Bagus SANTOSO  

     
    PAPER-Cryptography and Information Security

      Vol:
    E101-A No:5
      Page(s):
    787-798

    The isomorphism of polynomials with two secret (IP2S) problem is one candidate of computational assumptions for post-quantum cryptography. The idea of identification scheme based on IP2S is firstly introduced in 1996 by Patarin. However, the scheme was not described concretely enough and no more details are provided on how to transcribe the idea into a real-world implementation. Moreover, the security of the scheme has not been formally proven and the originally proposed security parameters are no longer secure based on the most recent research. In this paper, we propose a concrete identification scheme based on IP2S with the idea of Patarin as the starting point. We provide formal security proof of the proposed scheme against impersonation under passive attack, sequential active attack, and concurrent active attack. We also propose techniques to reduce the implementation cost such that we are able to cut the storage cost and average communication cost to an extent that under parameters for the standard 80-bit security, the scheme is implementable even on the lightweight devices in the current market.

  • Semi-Blind Interference Cancellation with Multiple Receive Antennas for MIMO Heterogeneous Networks

    Huiyu YE  Kazuhiko FUKAWA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/11/10
      Vol:
    E101-B No:5
      Page(s):
    1299-1310

    Our previous work proposed a semi-blind single antenna interference cancellation scheme to cope with severe inter-cell interference in heterogeneous networks. This paper extends the scheme to allow multiple-receive-antenna implementation. It does not require knowledge of the training sequences of interfering signals and can cancel multiple interfering signals irrespective of the number of receive antennas. The proposed scheme applies an enhanced version of the quantized channel approach to suboptimal joint channel estimation and signal detection (JCESD) during the training period in order to blindly estimate channels of the interfering signals, while reducing the computational complexity of optimum JCESD drastically. Different from the previous work, the proposed scheme applies the quantized channel generation and local search at each individual receive antenna so as to estimate transmitted symbol matrices during the training period. Then, joint estimation is newly introduced in order to estimate a channel matrix from the estimated symbol matrices, which operates in the same manner as the expectation maximization (EM) algorithm and considers signals received at all receive antennas. Using the estimated channels, the proposed scheme performs multiuser detection (MUD) during the data period under the maximum likelihood (ML) criterion in order to cancel the interference. Computer simulations with two receive antennas under two-interfering-stream conditions show that the proposed scheme outperforms interference rejection combining (IRC) with perfect channel state information (CSI) and MUD with channels estimated by a conventional scheme based on the generalized Viterbi algorithm, and can achieve almost the same average bit error rate (BER) performance as MUD with channels estimated from sufficiently long training sequences of both the desired stream(s) and the interfering streams, while reducing the computational complexity significantly compared with full search involving all interfering signal candidates during the training period.

821-840hit(5900hit)