The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Z(5900hit)

881-900hit(5900hit)

  • A New Block Association Scheme for IEEE 802.11ah

    Pranesh STHAPIT  Jae-Young PYUN  

     
    PAPER

      Pubricized:
    2017/09/19
      Vol:
    E101-B No:3
      Page(s):
    648-656

    IEEE 802.11ah is a new wireless standard for large-scale wireless connectivity in IoT and M2M applications. One of the major requirements placed on IEEE 802.11ah is the energy-efficient communication of several thousand stations with a single access point. This is especially difficult to achieve during network initialization, because the several thousand stations must rely on the rudimentary approach of random channel access, and the inevitable increase in channel access contention yields a long association delay. IEEE 802.11ah has introduced an authentication control mechanism that classifies stations into groups, and only a small number of stations in a group are allowed to access the medium at a time. Although the grouping strategy provides fair channel access to a large number of stations, the presence of several thousand stations and limitation that only a group can use the channel at a time, causes the association time to remain excessive. In this paper, we propose a novel block association method that enables simultaneous association of all groups. Our experiments verify that our block association method decreases the total association time by many folds.

  • Generalized Spatial Modulation Based on Quaternary Quasi-Orthogonal Sequences

    Yulong SHANG  Hojun KIM  Hosung PARK  Taejin JUNG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E101-A No:3
      Page(s):
    640-643

    The conventional generalized spatial modulation (GSM) simultaneously activates multiple transmit antennas in order to improve the spectral efficiency of the original SM. In this letter, to lessen the hardware burden of the multiple RF chains, we provide a new scheme that is designed by combining the GSM scheme using only two active antennas with quaternary quasi-orthogonal sequences of a length of two. Compared with the other SM schemes, the proposed scheme has significant benefits in average error performances and/or their hardware complexities of the RF systems.

  • PROVIT-CI: A Classroom-Oriented Educational Program Visualization Tool

    Yu YAN  Kohei HARA  Takenobu KAZUMA  Yasuhiro HISADA  Aiguo HE  

     
    PAPER-Educational Technology

      Pubricized:
    2017/11/01
      Vol:
    E101-D No:2
      Page(s):
    447-454

    Studies have shown that program visualization(PV) is effective for student programming exercise or self-study support. However, very few instructors actively use PV tools for programming lectures. This article discussed the impediments the instructors meet during combining PV tools into lecture classrooms and proposed a C programming classroom instruction support tool based on program visualization — PROVIT-CI (PROgram VIsualization Tool for Classroom Instruction). PROVIT-CI has been consecutively and actively used by the instructors in author's university to enhance their lectures since 2015. The evaluation of application results in an introductory C programming course shows that PROVIT-CI is effective and helpful for instructors classroom use.

  • Optimal Design Method of Sub-Ranging ADC Based on Stochastic Comparator

    Md. Maruf HOSSAIN  Tetsuya IIZUKA  Toru NAKURA  Kunihiro ASADA  

     
    PAPER

      Vol:
    E101-A No:2
      Page(s):
    410-424

    An optimal design method for a sub-ranging Analog-to-Digital Converter (ADC) based on stochastic comparator is demonstrated by performing theoretical analysis of random comparator offset voltages. If the Cumulative Distribution Function (CDF) of the comparator offset is defined appropriately, we can calculate the PDFs of the output code and the effective resolution of a stochastic comparator. It is possible to model the analog-to-digital conversion accuracy (defined as yield) of a stochastic comparator by assuming that the correlations among the number of comparator offsets within different analog steps corresponding to the Least Significant Bit (LSB) of the output transfer function are negligible. Comparison with Monte Carlo simulation verifies that the proposed model precisely estimates the yield of the ADC when it is designed for a reasonable target yield of >0.8. By applying this model to a stochastic comparator we reveal that an additional calibration significantly enhances the resolution, i.e., it increases the Number of Bits (NOB) by ∼ 2 bits for the same target yield. Extending the model to a stochastic-comparator-based sub-ranging ADC indicates that the ADC design parameters can be tuned to find the optimal resource distribution between the deterministic coarse stage and the stochastic fine stage.

  • Realizability of Choreography Given by Two Scenarios

    Toshiki KINOSHITA  Toshiyuki MIYAMOTO  

     
    PAPER

      Vol:
    E101-A No:2
      Page(s):
    345-356

    For a service-oriented architecture-based system, the problem of synthesizing a concrete model (i.e., behavioral model) for each peer configuring the system from an abstract specification-which is referred to as choreography-is known as the choreography realization problem. A flow of interaction of peers is called a scenario. In our previous study, we showed conditions and an algorithm to synthesize concrete models when choreography is given by one scenario. In this paper, we extend the study for choreography given by two scenarios. We show necessary and sufficient conditions on the realizability of choreography under both cases where there exist conflicts between scenarios and no conflicts exist.

  • Consensus-Based Distributed Particle Swarm Optimization with Event-Triggered Communication

    Kazuyuki ISHIKAWA  Naoki HAYASHI  Shigemasa TAKAI  

     
    PAPER

      Vol:
    E101-A No:2
      Page(s):
    338-344

    This paper proposes a consensus-based distributed Particle Swarm Optimization (PSO) algorithm with event-triggered communications for a non-convex and non-differentiable optimization problem. We consider a multi-agent system whose local communications among agents are represented by a fixed and connected graph. Each agent has multiple particles as estimated solutions of global optima and updates positions of particles by an average consensus dynamics on an auxiliary variable that accumulates the past information of the own objective function. In contrast to the existing time-triggered approach, the local communications are carried out only when the difference between the current auxiliary variable and the variable at the last communication exceeds a threshold. We show that the global best can be estimated in a distributed way by the proposed event-triggered PSO algorithm under a diminishing condition of the threshold for the trigger condition.

  • An Efficient Handover Measurement Technique for Millimeter-Wave Cellular Communications

    Jasper Meynard P. ARANA  Rothna PEC  Yong Soo CHO  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2017/08/07
      Vol:
    E101-B No:2
      Page(s):
    592-602

    An efficient handover measurement technique is proposed for millimeter-wave (mm-wave) cellular systems with directional antenna beams. As the beam synchronization signal (BSS) carries the cell ID and the beam ID in a hierarchal manner, handover events (interbeam handover and intercell handover) are distinguished at the physical layer. The proposed signal metrics are shown to be effective in detecting the beam boundaries and cell boundaries in mm-wave cellular systems, which allows to distinguish interbeam handover from intercell handover. The proposed handover measurement technique is shown to reduce the processing time significantly using the proposed signal metrics produced by the BSS.

  • Half-Height-Pin Gap Waveguide Technology and Its Applications in High Gain Planar Array Antennas at Millimeter Wave Frequency Open Access

    Jian YANG  Fangfang FAN  Parastoo TAGHIKHANI  Abbas VOSOOGH  

     
    INVITED PAPER

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    285-292

    This paper presents a new form of gap waveguide technology - the half-height-pin gap waveguide. The gap waveguide technology is a new transmission line technology introduced recently, which makes use of the stopband of wave propagation created by a pair of parallel plates, one PEC (perfect electric conductor) and one PMC (perfect magnetic conductor), with an air gap in between less than a quarter of the wavelength at operation frequency. Applying this PEC/PMC gap plate structure to ridged waveguides, rectangular hollow waveguides and microstrip lines, we can have the ridged gap waveguides, groove gap waveguides and inverted gap waveguide microstrip lines, respectively, without requiring a conductive or galvanic contact between the upper PEC and the lower PMC plates. This contactless property of the gap waveguide technology relaxes significantly the manufacturing requirements for devices and antennas at millimeter wave frequencies. PMC material does not exist in nature, and an artificial PMC boundary can be made by such as periodic pin array with the pin length about a quarter wavelength. However, the quarter-wavelength pins, referred to as the full-height pins, are often too long for manufacturing. In order to overcome this difficulty, a new half-height-pin gap waveguide is introduced. The working principles and Q factors for the half-height-pin gap waveguides are described, analyzed and verified with measurements in this paper. It is concluded that half-height-pin gap waveguides have similar Q factors and operation bandwidth to the full-height-pin gap waveguides. As an example of the applications, a high gain planar array antenna at V band by using the half-height-pin gap waveguide has been designed and is presented in the paper with a good reflection coefficient and high aperture efficiency.

  • Small Wide-Band Printed Inverted-L Antenna with Non-Foster Matching

    Abdullah HASKOU  Dominique LEMUR  Sylvain COLLARDEY  Ala SHARAIHA  

     
    PAPER-Antennas

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    309-315

    In this paper, we present a small, wide-band, Inverted-L Antenna (ILA) with non-Foster matching. The antenna's size is 9.5×19.5mm2 and it is integrated on a Printed Circuit Board (PCB) of 90×35mm2. A design procedure is presented and sensitivity and stability analysis are performed. Experiments show that the non-Foster matched antenna has (S11 < -10dB) impedance bandwidth of 92.2% at a central frequency of 1.5GHz, whereas the passive antenna (without the non-Foster matching) has an impedance bandwidth of 12.6% at 2.46GHz.

  • A Low-Power Pulse-Shaped Duobinary ASK Modulator for IEEE 802.11ad Compliant 60GHz Transmitter in 65nm CMOS

    Bangan LIU  Yun WANG  Jian PANG  Haosheng ZHANG  Dongsheng YANG  Aravind Tharayil NARAYANAN  Dae Young LEE  Sung Tae CHOI  Rui WU  Kenichi OKADA  Akira MATSUZAWA  

     
    PAPER-Electronic Circuits

      Vol:
    E101-C No:2
      Page(s):
    126-134

    An energy efficient modulator for an ultra-low-power (ULP) 60-GHz IEEE transmitter is presented in this paper. The modulator consists of a differential duobinary coder and a semi-digital finite-impulse-response (FIR) pulse-shaping filter. By virtue of differential duobinary coding and pulse shaping, the transceiver successfully solves the adjacent-channel-power-ratio (ACPR) issue of conventional on-off-keying (OOK) transceivers. The proposed differential duobinary code adopts an over-sampling precoder, which relaxes timing requirement and reduces power consumption. The semi-digital FIR eliminates the power hungry digital multipliers and accumulators, and improves the power efficiency through optimization of filter parameters. Fabricated in a 65nm CMOS process, this modulator occupies a core area of 0.12mm2. With a throughput of 1.7Gbps/2.6Gbps, power consumption of modulator is 24.3mW/42.8mW respectively, while satisfying the IEEE 802.11ad spectrum mask.

  • Fast Fog Detection for De-Fogging of Road Driving Images

    Kyeongmin JEONG  Kwangyeon CHOI  Donghwan KIM  Byung Cheol SONG  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2017/10/30
      Vol:
    E101-D No:2
      Page(s):
    473-480

    Advanced driver assistance system (ADAS) can recognize traffic signals, vehicles, pedestrians, and so on all over the vehicle. However, because the ADAS is based on images taken in an outdoor environment, it is susceptible to ambient weather such as fog. So, preprocessing such as de-fog and de-hazing techniques is required to prevent degradation of object recognition performance due to decreased visibility. But, if such a fog removal technique is applied in an environment where there is little or no fog, the visual quality may be deteriorated due to excessive contrast improvement. And in foggy road environments, typical fog removal algorithms suffer from color distortion. In this paper, we propose a temporal filter-based fog detection algorithm to selectively apply de-fogging method only in the presence of fog. We also propose a method to avoid color distortion by detecting the sky region and applying different methods to the sky region and the non-sky region. Experimental results show that in the actual images, the proposed algorithm shows an average of more than 97% fog detection accuracy, and improves subjective image quality of existing de-fogging algorithms. In addition, the proposed algorithm shows very fast computation time of less than 0.1ms per frame.

  • A Semidefinite Programming Approach for Doppler Frequency Shift Based Stationary Target Localization

    Li Juan DENG  Ping WEI  Yan Shen DU  Hua Guo ZHANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:2
      Page(s):
    507-511

    In this work, we address the stationary target localization problem by using Doppler frequency shift (DFS) measurements. Based on the measurement model, the maximum likelihood estimation (MLE) of the target position is reformulated as a constrained weighted least squares (CWLS) problem. However, due to its non-convex nature, it is difficult to solve the problem directly. Thus, in order to yield a semidefinite programming (SDP) problem, we perform a semidefinite relaxation (SDR) technique to relax the CWLS problem. Although the SDP is a relaxation of the original MLE, it can facilitate an accurate estimate without post processing. Simulations are provided to confirm the promising performance of the proposed method.

  • Workload Estimation for Firewall Rule Processing on Network Functions Virtualization

    Dai SUZUKI  Satoshi IMAI  Toru KATAGIRI  

     
    PAPER-Network

      Pubricized:
    2017/08/08
      Vol:
    E101-B No:2
      Page(s):
    528-537

    Network Functions Virtualization (NFV) is expected to provide network systems that offer significantly lower cost and greatly flexibility to network service providers and their users. Unfortunately, it is extremely difficult to implement Virtualized Network Functions (VNFs) that can equal the performance of Physical Network Functions. To realize NFV systems that have adequate performance, it is critical to accurately grasp VNF workload. In this paper, we focus on the virtual firewall as a representative VNF. The workload of the virtual firewall is mostly determined by firewall rule processing and the Access Control List (ACL) configurations. Therefore, we first reveal the major factors influencing the workload of the virtual firewall and some issues of monitoring CPU load as a traditional way of understanding the workload of virtual firewalls through preliminary experiments. Additionally, we propose a new workload metric for the virtual firewall that is derived by mathematical models of the firewall workload in consideration of the packet processing in each rule and the ACL configurations. Furthermore, we show the effectiveness of the proposed workload metric through various experiments.

  • Off-Chip Training with Additive Perturbation for FPGA-Based Hand Sign Recognition System

    Hiroomi HIKAWA  Masayuki TAMAKI  Hidetaka ITO  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E101-A No:2
      Page(s):
    499-506

    An FPGA-based hardware hand sign recognition system was proposed in our previous work. The hand sign recognition system consisted of a preprocessing and a self-organizing map (SOM)-Hebb classifier. The training of the SOM-Hebb classifier was carried out by an off-chip computer using training vectors given by the system. The recognition performance was reportedly improved by adding perturbation to the training data. The perturbation was added manually during the process of image capture. This paper proposes a new off-chip training method with automatic performance improvement. To improve the system's recognition performance, the off-chip training system adds artificially generated perturbation to the training feature vectors. Advantage of the proposed method compared to additive scale perturbation to image is its low computational cost because the number of feature vector elements is much less than that of pixels contained in image. The feasibility of the proposed off-chip training was tested in simulations and experiments using American sign language (ASL). Simulation results showed that the proposed perturbation computation alters the feature vector so that it is same as the one obtained by a scaled image. Experimental results revealed that the proposed off-chip training improved the recognition accuracy from 78.9% to 94.3%.

  • Robust Secure Transmit Design for SWIPT System with Many Types of Wireless Users and Passive Eavesdropper

    Pham-Viet TUAN  Insoo KOO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    441-450

    This paper studies a simultaneous wireless information and power transfer (SWIPT) system in which the transmitter not only sends data and energy to many types of wireless users, such as multiple information decoding users, multiple hybrid power-splitting users (i.e., users with a power-splitting structure to receive both information and energy), and multiple energy harvesting users, but also prevents information from being intercepted by a passive eavesdropper. The transmitter is equipped with multiple antennas, whereas all users and the eavesdropper are assumed to be equipped with a single antenna. Since the transmitter does not have any channel state information (CSI) about the eavesdropper, artificial noise (AN) power is maximized to mask information as well as to interfere with the eavesdropper as much as possible. The non-convex optimization problem is formulated to minimize the transmit power satisfying all signal-to-interference-plus-noise (SINR) and harvested energy requirements for all users so that the remaining power for generating AN is maximized. With perfect CSI, a semidefinite relaxation (SDR) technique is applied, and the optimal solution is proven to be tight. With imperfect CSI, SDR and a Gaussian randomization algorithm are proposed to find the suboptimal solution. Finally, numerical performance with respect to the maximum SINR at the eavesdropper is determined by a Monte-Carlo simulation to compare the proposed AN scenario with a no-AN scenario, as well as to compare perfect CSI with imperfect CSI.

  • PAPR Reduction Method for Digital Predistortion Linearizer Compensating for Frequency Dependent IMD Components

    Yasunori SUZUKI  Junya OHKAWARA  Shoichi NARAHASHI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E101-C No:2
      Page(s):
    118-125

    This paper proposes a method for reducing the peak-to-average power ratio (PAPR) at the output signal of a digital predistortion linearizer (DPDL) that compensates for frequency dependent intermodulation distortion (IMD) components. The proposed method controls the amplitude and phase values of the frequency components corresponding to the transmission bandwidth of the output signal. A DPDL employing the proposed method simultaneously provides IMD component cancellation of out-of-band components and PAPR reduction at the output signal. This paper identifies the amplitude and phase conditions to minimize the PAPR. Experimental results based on a 2-GHz band 1-W class power amplifier show that the proposed method improves the drain efficiency of the power amplifier when degradation is allowed in the error vector magnitude. To the best knowledge of the authors, this is the first PAPR reduction method for DPDL that reduces the PAPR while simultaneously compensating for IMD components.

  • Quantized Event-Triggered Control of Discrete-Time Linear Systems with Switching Triggering Conditions

    Shumpei YOSHIKAWA  Koichi KOBAYASHI  Yuh YAMASHITA  

     
    PAPER

      Vol:
    E101-A No:2
      Page(s):
    322-327

    Event-triggered control is a method that the control input is updated only when a certain triggering condition is satisfied. In networked control systems, quantization errors via A/D conversion should be considered. In this paper, a new method for quantized event-triggered control with switching triggering conditions is proposed. For a discrete-time linear system, we consider the problem of finding a state-feedback controller such that the closed-loop system is uniformly ultimately bounded in a certain ellipsoid. This problem is reduced to an LMI (Linear Matrix Inequality) optimization problem. The volume of the ellipsoid may be adjusted. The effectiveness of the proposed method is presented by a numerical example.

  • Arbitrarily-Shaped Reflectarray Resonant Elements for Dual-Polarization Use and Polarization Conversion Open Access

    Hiroyuki DEGUCHI  Daichi HIGASHI  Hiroki YAMADA  Shogo MATSUMOTO  Mikio TSUJI  

     
    INVITED PAPER

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    277-284

    This paper proposes a genetic algorithm (GA) based design method for arbitrarily-shaped resonant elements that offer enhanced reflectarray antenna performance. All elements have the specified phase property over the range of 360°, and also have dual-polarization and low cross-polarization properties for better reflectarray performance. In addition, the proposal is suitable for linear-to-circular polarization conversion elements. Thus, polarizer reflectarray elements are also presented in this paper. The proposed elements are validated using both numerical simulations and experiments.

  • Area Efficient Annealing Processor for Ising Model without Random Number Generator

    Hidenori GYOTEN  Masayuki HIROMOTO  Takashi SATO  

     
    PAPER-Device and Architecture

      Pubricized:
    2017/11/17
      Vol:
    E101-D No:2
      Page(s):
    314-323

    An area-efficient FPGA-based annealing processor that is based on Ising model is proposed. The proposed processor eliminates random number generators (RNGs) and temperature schedulers, which are the key components in the conventional annealing processors and occupying a large portion of the design. Instead, a shift-register-based spin flipping scheme successfully helps the Ising model from stucking in the local optimum solutions. An FPGA implementation and software-based evaluation on max-cut problems of 2D-grid torus structure demonstrate that our annealing processor solves the problems 10-104 times faster than conventional optimization algorithms to obtain the solution of equal accuracy.

  • An Overview of China Millimeter-Wave Multiple Gigabit Wireless Local Area Network System Open Access

    Wei HONG  Shiwen HE  Haiming WANG  Guangqi YANG  Yongming HUANG  Jixing CHEN  Jianyi ZHOU  Xiaowei ZHU  Nianzhu ZHANG  Jianfeng ZHAI  Luxi YANG  Zhihao JIANG  Chao YU  

     
    INVITED PAPER

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    262-276

    This paper presents an overview of the advance of the China millimeter-wave multiple gigabit (CMMG) wireless local area network (WLAN) system which operates in the 45 GHz frequency band. The CMMG WLAN system adopts the multiple antennas technologies to support data rate up to 15Gbps. During the progress of CMMG WLAN standardization, some new key technologies were introduced to adapt the millimeter-wave characteristic, including the usage of the zero correlation zone (ZCZ) sequence, a novel lower density parity check code (LDPC)-based packet encoding, and multiple input multiple output (MIMO) single carrier transmission. Extensive numerical results and system prototype test are also given to validate the performance of the technologies adopted by CMMG WLAN system.

881-900hit(5900hit)