The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Z(5900hit)

721-740hit(5900hit)

  • Hybrid BD-GMD Precoding for Multiuser Millimeter-Wave Massive MIMO Systems

    Wei WU  Danpu LIU  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/06/27
      Vol:
    E102-B No:1
      Page(s):
    63-75

    The potential for using millimeter-wave (mmWave) frequencies in future 5G wireless cellular communication systems has motivated the study of large-scale antenna arrays to achieve highly directional beamforming. However, the conventional fully digital beamforming (DBF) methods which require one radio frequency (RF) chain per antenna element are not viable for large-scale antenna arrays due to the high cost and large power consumption of high frequency RF chain components. Hybrid precoding can significantly reduce the number of required RF chains and relieve the huge power consumption in mmWave massive multiple-input multiple-output (MIMO) systems, thus attracting much interests from academic and industry. In this paper, we consider the downlink communication of a massive multiuser MIMO (MU-MIMO) system in the mmWave channel, and propose a low complexity hybrid block diagonal geometric mean decomposition (BD-GMD) scheme. More specially, a joint transmit-receive (Tx-Rx) analog beamforming with large-scale arrays is proposed to improve channel gain, and then a low-dimensional BD-GMD approach is implemented at the equivalent baseband channel to mitigate the inter-user interference and equalize different data streams of each user. With the help of successive interference cancellation (SIC) at the receiver, we can decompose each user's MIMO channel into parallel sub-channels with identical higher SNRs/SINRs, thus equal-rate coding can be applied across the sub-channels of each user. Finally, simulation results verify that the proposed hybrid BD-GMD precoding scheme outperforms existing conventional fully digital and hybrid precoding schemes and is able to achieve much better BER performance.

  • Measuring Lost Packets with Minimum Counters in Traffic Matrix Estimation

    Kohei WATABE  Toru MANO  Takeru INOUE  Kimihiro MIZUTANI  Osamu AKASHI  Kenji NAKAGAWA  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/07/02
      Vol:
    E102-B No:1
      Page(s):
    76-87

    Traffic matrix (TM) estimation has been extensively studied for decades. Although conventional estimation techniques assume that traffic volumes are unchanged between origins and destinations, packets are often lost on a path due to traffic burstiness, silent failures, etc. Counting every path at every link, we could easily get the traffic volumes with their change, but this approach significantly increases the measurement cost since counters are usually implemented using expensive memory structures like a SRAM. This paper proposes a mathematical model to estimate TMs including volume changes. The method is established on a Boolean fault localization technique; the technique requires fewer counters as it simply determines whether each link is lossy. This paper extends the Boolean technique so as to deal with traffic volumes with error bounds that requires only a few counters. In our method, the estimation errors can be controlled through parameter settings, while the minimum-cost counter placement is determined with submodular optimization. Numerical experiments are conducted with real network datasets to evaluate our method.

  • Reconfigurable Metal Chassis Antenna

    Chi-Yuk CHIU  Shanpu SHEN  Fan JIANG  Katsunori ISHIMIYA  Qingsha S. CHENG  Ross D. MURCH  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/07/17
      Vol:
    E102-B No:1
      Page(s):
    147-155

    Smartphones for wireless communication typically consist of a large area frontal liquid crystal display (LCD), which incorporates a metal back plate, and a back cover chassis made from metal. Leveraging this structure a new approach to construct antennas for smartphones is proposed where the complete metal back cover chassis and LCD back plate are used as the radiating element and ground plane. In the design a feedline is connected between the metal back cover chassis and LCD back plate, along with shorts at various locations between the two metal plates, to control the resonance frequency of the resulting antenna. Multiple-band operation is possible without the need for any slots in the plates for radiation. Results show that antenna frequency reconfigurability can be achieved when switching function is added to the shorts so that several wireless communication bands can be covered. This approach is different from existing metallic frame antenna designs currently available in the market. A design example is provided which uses one PIN diode for the switching shorts and the target frequency bands are 740-780MHz and 900-1000MHz & 1700-1900MHz. The optimization of LC matchings and concerns of hand effects and metallic components between the chassis and LCD metal back plate are also addressed.

  • Center Clamp for Wide Input Voltage Range Applications

    Alagu DHEERAJ  Rajini VEERARAGHAVALU  

     
    PAPER-Electronic Circuits

      Vol:
    E102-C No:1
      Page(s):
    77-82

    Forward converter is most suitable for low voltage and high current applications such as LEDs, battery chargers, EHV etc. The active clamp transformer reset technique offers many advantages over conventional single-ended reset techniques, including lower voltage stress on the main switch, the ability to switch at zero voltage and duty cycle operation above 50 percent. Several papers have compared the functional merits of the active clamp over the more extensively used RCD clamp, third winding and resonant reset techniques. This paper discusses about a center clamp technique with one common core reset circuit making it suitable for wide input voltage applications with extended duty cycle.

  • Random Access Control Scheme with Reservation Channel for Capacity Expansion of QZSS Safety Confirmation System Open Access

    Suguru KAMEDA  Kei OHYA  Tomohide TAKAHASHI  Hiroshi OGUMA  Noriharu SUEMATSU  

     
    PAPER

      Vol:
    E102-A No:1
      Page(s):
    186-194

    For capacity expansion of the Quasi-Zenith Satellite System (QZSS) safety confirmation system, frame slotted ALOHA with flag method has previously been proposed as an access control scheme. While it is always able to communicate in an optimum state, its maximum channel efficiency is only 36.8%. In this paper, we propose adding a reservation channel (R-Ch) to the frame slotted ALOHA with flag method to increase the upper limit of the channel efficiency. With an R-Ch, collision due to random channel selection is decreased by selecting channels in multiple steps, and the channel efficiency is improved up to 84.0%. The time required for accommodating 3 million mobile terminals, each sending one message, when using the flag method only and the flag method with an R-Ch are compared. It is shown that the accommodating time can be reduced to less than half by adding an R-Ch to the flag method.

  • A Block-Permutation-Based Encryption Scheme with Independent Processing of RGB Components

    Shoko IMAIZUMI  Hitoshi KIYA  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2018/09/07
      Vol:
    E101-D No:12
      Page(s):
    3150-3157

    This paper proposes a block-permutation-based encryption (BPBE) scheme for the encryption-then-compression (ETC) system that enhances the color scrambling. A BPBE image can be obtained through four processes, positional scrambling, block rotation/flip, negative-positive transformation, and color component shuffling, after dividing the original image into multiple blocks. The proposed scheme scrambles the R, G, and B components independently in positional scrambling, block rotation/flip, and negative-positive transformation, by assigning different keys to each color component. The conventional scheme considers the compression efficiency using JPEG and JPEG 2000, which need a color conversion before the compression process by default. Therefore, the conventional scheme scrambles the color components identically in each process. In contrast, the proposed scheme takes into account the RGB-based compression, such as JPEG-LS, and thus can increase the extent of the scrambling. The resilience against jigsaw puzzle solver (JPS) can consequently be increased owing to the wider color distribution of the BPBE image. Additionally, the key space for resilience against brute-force attacks has also been expanded exponentially. Furthermore, the proposed scheme can maintain the JPEG-LS compression efficiency compared to the conventional scheme. We confirm the effectiveness of the proposed scheme by experiments and analyses.

  • Multiuser Multiantenna Downlink Transmission Using Extended Regularized Channel Inversion Precoding

    Yanqing LIU  Liyun DAI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/06/22
      Vol:
    E101-B No:12
      Page(s):
    2462-2470

    In this paper, we apply extended regularized channel inversion precoding to address the multiuser multiantenna downlink transmission problem. Different from conventional regularized channel inversion precoding, extended RCI precoding considers non-homogeneous channels, adjusts more regularization parameters, and exploits the information gained by inverting the covariance matrix of the channel. Two ways of determining the regularization parameters are investigated. First, the parameters can be determined by solving a max-min SINR problem. The constraints of the problem can be transformed to the second-order cone (SOC) constraints. The optimal solution of the problem can be obtained by iteratively solving a second-order cone programming (SOCP) problem. In order to reduce the computational complexity, a one-shot algorithm is proposed. Second, the sum-rate maximization problem is discussed. The simple gradient-based method is used to solve the problem and get the regularization parameters. The simulation results indicate that the proposed algorithms exhibit improved max-min SINR performance and sum-rate performance over RCI precoding.

  • Hardness Evaluation for Search LWE Problem Using Progressive BKZ Simulator

    Yuntao WANG  Yoshinori AONO  Tsuyoshi TAKAGI  

     
    PAPER-Cryptography and Information Security

      Vol:
    E101-A No:12
      Page(s):
    2162-2170

    The learning with errors (LWE) problem is considered as one of the most compelling candidates as the security base for the post-quantum cryptosystems. For the application of LWE based cryptographic schemes, the concrete parameters are necessary: the length n of secret vector, the moduli q and the deviation σ. In the middle of 2016, Germany TU Darmstadt group initiated the LWE Challenge in order to assess the hardness of LWE problems. There are several approaches to solve the LWE problem via reducing LWE to other lattice problems. Xu et al.'s group solved some LWE Challenge instances using Liu-Nguyen's adapted enumeration technique (reducing LWE to BDD problem) [23] and they published this result at ACNS 2017 [32]. In this paper, at first, we applied the progressive BKZ on the LWE challenge cases of σ/q=0.005 using Kannan's embedding technique. We can intuitively observe that the embedding technique is more efficient with the embedding factor M closer to 1. Then we will analyze the optimal number of samples m for a successful attack on LWE case with secret length of n. Thirdly based on this analysis, we show the practical cost estimations using the precise progressive BKZ simulator. Simultaneously, our experimental results show that for n ≥ 55 and the fixed σ/q=0.005, the embedding technique with progressive BKZ is more efficient than Xu et al.'s implementation of the enumeration algorithm in [32][14]. Moreover, by our parameter setting, we succeed in solving the LWE Challenge over (n,σ/q)=(70, 0.005) using 216.8 seconds (32.73 single core hours).

  • Improving Thai Word and Sentence Segmentation Using Linguistic Knowledge

    Rungsiman NARARATWONG  Natthawut KERTKEIDKACHORN  Nagul COOHAROJANANONE  Hitoshi OKADA  

     
    PAPER-Natural Language Processing

      Pubricized:
    2018/09/07
      Vol:
    E101-D No:12
      Page(s):
    3218-3225

    Word boundary ambiguity in word segmentation has long been a fundamental challenge within Thai language processing. The Conditional Random Fields (CRF) model is among the best-known methods to have achieved remarkably accurate segmentation. Nevertheless, current advancements appear to have left the problem of compound words unaccounted for. Compound words lose their meaning or context once segmented. Hence, we introduce a dictionary-based word-merging algorithm, which merges all kinds of compound words. Our evaluation shows that the algorithm can accomplish a high-accuracy of word segmentation, with compound words being preserved. Moreover, it can also restore some incorrectly segmented words. Another problem involving a different word-chunking approach is sentence boundary ambiguity. In tackling the problem, utilizing the part of speech (POS) of a segmented word has been found previously to help boost the accuracy of CRF-based sentence segmentation. However, not all segmented words can be tagged. Thus, we propose a POS-based word-splitting algorithm, which splits words in order to increase POS tags. We found that with more identifiable POS tags, the CRF model performs better in segmenting sentences. To demonstrate the contributions of both methods, we experimented with three of their applications. With the word merging algorithm, we found that intact compound words in the product of topic extraction can help to preserve their intended meanings, offering more precise information for human interpretation. The algorithm, together with the POS-based word-splitting algorithm, can also be used to amend word-level Thai-English translations. In addition, the word-splitting algorithm improves sentence segmentation, thus enhancing text summarization.

  • A Kind of Disjoint Cyclic Perfect Mendelsohn Difference Family and Its Applications in Strictly Optimal FHSs

    Shanding XU  Xiwang CAO  Jian GAO  Chunming TANG  

     
    PAPER-Communication Theory and Signals

      Vol:
    E101-A No:12
      Page(s):
    2338-2343

    As an optimal combinatorial object, cyclic perfect Mendelsohn difference family (CPMDF) was introduced by Fuji-Hara and Miao to construct optimal optical orthogonal codes. In this paper, we propose a direct construction of disjoint CPMDFs from the Zeng-Cai-Tang-Yang cyclotomy. Compared with a recent work of Fan, Cai, and Tang, our construction doesn't need to depend on a cyclic difference matrix. Furthermore, strictly optimal frequency-hopping sequences (FHSs) are a kind of optimal FHSs which has optimal Hamming auto-correlation for any correlation window. As an application of our disjoint CPMDFs, we present more flexible combinatorial constructions of strictly optimal FHSs, which interpret the previous construction proposed by Cai, Zhou, Yang, and Tang.

  • A Generic Construction of Mutually Orthogonal Optimal Binary ZCZ Sequence Sets

    Yubo LI  Shuonan LI  Hongqian XUAN  Xiuping PENG  

     
    LETTER-Sequence

      Vol:
    E101-A No:12
      Page(s):
    2217-2220

    In this letter, a generic method to construct mutually orthogonal binary zero correlation zone (ZCZ) sequence sets from mutually orthogonal complementary sequence sets (MOCSSs) with certain properties is presented at first. Then MOCSSs satisfying conditions are generated from binary orthogonal matrices with order N×N, where N=p-1, p is a prime. As a result, mutually orthogonal binary ZCZ sequence sets with parameters (2N2,N,N+1)-ZCZ can be obtained, the number of ZCZ sets is N. Note that each single ZCZ sequence set is optimal with respect to the theoretical bound.

  • A Property of a Class of Gaussian Periods and Its Application

    Yuhua SUN  Qiang WANG  Qiuyan WANG  Tongjiang YAN  

     
    PAPER-Communication Theory and Signals

      Vol:
    E101-A No:12
      Page(s):
    2344-2351

    In the past two decades, many generalized cyclotomic sequences have been constructed and they have been used in cryptography and communication systems for their high linear complexity and low autocorrelation. But there are a few of papers focusing on the 2-adic complexities of such sequences. In this paper, we first give a property of a class of Gaussian periods based on Whiteman's generalized cyclotomic classes of order 4. Then, as an application of this property, we study the 2-adic complexity of a class of Whiteman's generalized cyclotomic sequences constructed from two distinct primes p and q. We prove that the 2-adic complexity of this class of sequences of period pq is lower bounded by pq-p-q-1. This lower bound is at least greater than one half of its period and thus it shows that this class of sequences can resist against the rational approximation algorithm (RAA) attack.

  • A New DY Conjugate Gradient Method and Applications to Image Denoising

    Wei XUE  Junhong REN  Xiao ZHENG  Zhi LIU  Yueyong LIANG  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2018/09/14
      Vol:
    E101-D No:12
      Page(s):
    2984-2990

    Dai-Yuan (DY) conjugate gradient method is an effective method for solving large-scale unconstrained optimization problems. In this paper, a new DY method, possessing a spectral conjugate parameter βk, is presented. An attractive property of the proposed method is that the search direction generated at each iteration is descent, which is independent of the line search. Global convergence of the proposed method is also established when strong Wolfe conditions are employed. Finally, comparison experiments on impulse noise removal are reported to demonstrate the effectiveness of the proposed method.

  • Modified Mutually ZCZ Set of Optical Orthogonal Sequences

    Takahiro MATSUMOTO  Hideyuki TORII  Yuta IDA  Shinya MATSUFUJI  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E101-A No:12
      Page(s):
    2415-2418

    In this paper, we propose a generation method of new mutually zero-correlation zone set of optical orthogonal sequences (MZCZ-OOS) consisting of binary and bi-phase sequence pairs based on the optical zero-correlation zone (ZCZ) sequence set. The MZCZ-OOS is composed of several small orthogonal sequence sets. The sequences that belong to same subsets are orthogonal, and there is a ZCZ between the sequence that belong to different subsets. The set is suitable for the M-ary quasi-synchronous optical code-division multiple access (M-ary/QS-OCDMA) system. The product of set size S and family size M of proposed MMZCZ-OOS is more than the upper bound of optical ZCZ sequence set, and is fewer than the that of optical orthogonal sequence set.

  • Visualization of Inter-Module Dataflow through Global Variables for Source Code Review

    Naoto ISHIDA  Takashi ISHIO  Yuta NAKAMURA  Shinji KAWAGUCHI  Tetsuya KANDA  Katsuro INOUE  

     
    LETTER-Software System

      Pubricized:
    2018/09/26
      Vol:
    E101-D No:12
      Page(s):
    3238-3241

    Defects in spacecraft software may result in loss of life and serious economic damage. To avoid such consequences, the software development process incorporates code review activity. A code review conducted by a third-party organization independently of a software development team can effectively identify defects in software. However, such review activity is difficult for third-party reviewers, because they need to understand the entire structure of the code within a limited time and without prior knowledge. In this study, we propose a tool to visualize inter-module dataflow for source code of spacecraft software systems. To evaluate the method, an autonomous rover control program was reviewed using this visualization. While the tool does not decreases the time required for a code review, the reviewers considered the visualization to be effective for reviewing code.

  • Security Evaluation for Block Scrambling-Based Image Encryption Including JPEG Distortion against Jigsaw Puzzle Solver Attacks

    Tatsuya CHUMAN  Hitoshi KIYA  

     
    LETTER-Image

      Vol:
    E101-A No:12
      Page(s):
    2405-2408

    Encryption-then-Compression (EtC) systems have been considered for the user-controllable privacy protection of social media like Twitter. The aim of this paper is to evaluate the security of block scrambling-based encryption schemes, which have been proposed to construct EtC systems. Even though this scheme has enough key spaces against brute-force attacks, each block in encrypted images has almost the same correlation as that of original images. Therefore, it is required to consider the security from different viewpoints from number theory-based encryption methods with provable security such as RSA and AES. In this paper, we evaluate the security of encrypted images including JPEG distortion by using automatic jigsaw puzzle solvers.

  • Salient Feature Selection for CNN-Based Visual Place Recognition

    Yutian CHEN  Wenyan GAN  Shanshan JIAO  Youwei XU  Yuntian FENG  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2018/09/26
      Vol:
    E101-D No:12
      Page(s):
    3102-3107

    Recent researches on mobile robots show that convolutional neural network (CNN) has achieved impressive performance in visual place recognition especially for large-scale dynamic environment. However, CNN leads to the large space of image representation that cannot meet the real-time demand for robot navigation. Aiming at this problem, we evaluate the feature effectiveness of feature maps obtained from the layer of CNN by variance and propose a novel method that reserve salient feature maps and make adaptive binarization for them. Experimental results demonstrate the effectiveness and efficiency of our method. Compared with state of the art methods for visual place recognition, our method not only has no significant loss in precision, but also greatly reduces the space of image representation.

  • A Verification Framework for Assembly Programs Under Relaxed Memory Model Using SMT Solver

    Pattaravut MALEEHUAN  Yuki CHIBA  Toshiaki AOKI  

     
    PAPER-Software System

      Pubricized:
    2018/09/12
      Vol:
    E101-D No:12
      Page(s):
    3038-3058

    In multiprocessors, memory models are introduced to describe the executions of programs among processors. Relaxed memory models, which relax the order of executions, are used in the most of the modern processors, such as ARM and POWER. Due to a relaxed memory model could change the program semantics, the executions of the programs might not be the same as our expectation that should preserve the program correctness. In addition to relaxed memory models, the way to execute an instruction is described by an instruction semantics, which varies among processor architectures. Dealing with instruction semantics among a variety of assembly programs is a challenge for program verification. Thus, this paper proposes a way to verify a variety of assembly programs that are executed under a relaxed memory model. The variety of assembly programs can be abstracted as the way to execute the programs by introducing an operation structure. Besides, there are existing frameworks for modeling relaxed memory models, which can realize program executions to be verified with a program property. Our work adopts an SMT solver to automatically reveal the program executions under a memory model and verify whether the executions violate the program property or not. If there is any execution from the solver, the program correctness is not preserved under the relaxed memory model. To verify programs, an experimental tool was developed to encode the given programs for a memory model into a first-order formula that violates the program correctness. The tool adopts a modeling framework to encode the programs into a formula for the SMT solver. The solver then automatically finds a valuation that satisfies the formula. In our experiments, two encoding methods were implemented based on two modeling frameworks. The valuations resulted by the solver can be considered as the bugs occurring in the original programs.

  • Real-Time Frame-Rate Control for Energy-Efficient On-Line Object Tracking

    Yusuke INOUE  Takatsugu ONO  Koji INOUE  

     
    PAPER

      Vol:
    E101-A No:12
      Page(s):
    2297-2307

    On-line object tracking (OLOT) has been a core technology in computer vision, and its importance has been increasing rapidly. Because this technology is utilized for battery-operated products, energy consumption must be minimized. This paper describes a method of adaptive frame-rate optimization to satisfy that requirement. An energy trade-off occurs between image capturing and object tracking. Therefore, the method optimizes the frame-rate based on always changed object speed for minimizing the total energy while taking into account the trade-off. Simulation results show a maximum energy reduction of 50.0%, and an average reduction of 35.9% without serious tracking accuracy degradation.

  • A Novel Class of Structured Zero-Correlation Zone Sequence Sets

    Takafumi HAYASHI  Takao MAEDA  Anh T. PHAM  Shinya MATSUFUJI  

     
    PAPER-Sequence

      Vol:
    E101-A No:12
      Page(s):
    2171-2183

    The present paper introduces a novel type of structured ternary sequences having a zero-correlation zone (zcz) for both periodic and aperiodic correlation functions. The cross-correlation function and the side lobe of the auto-correlation function of the proposed sequence set are zero for phase shifts within the zcz. The proposed zcz sequence set can be generated from an arbitrary pair of an Hadamard matrix of order lh and a binary/ternary perfect sequence of length lp. The sequence set of order 0 is identical to the r-th row of the Hadamard matrix. For m ≥ 0, the sequence set of order (m+1) is constructed from the sequence set of order m by sequence concatenation and interleaving. The sequence set has lp subsets of size 2lh. The periodic correlation function and the aperiodic correlation function of the proposed sequence set have a zcz from -(2m+1-1) to 2m+1-1. The periodic correlation function and the aperiodic correlation function of the sequences of the i-th subset and k-th subset have a zcz from -2m+2-(lh+1)((j-k) mod lp) to -2m+2-(lh+1)((j-k) mod lp). The proposed sequence is suitable for a heterogeneous wireless network, which is one of the candidates for the fifth-generation mobile networks.

721-740hit(5900hit)