The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Z(5900hit)

861-880hit(5900hit)

  • A Mixture Model for Image Boundary Detection Fusion

    Yinghui ZHANG  Hongjun WANG  Hengxue ZHOU  Ping DENG  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2018/01/18
      Vol:
    E101-D No:4
      Page(s):
    1159-1166

    Image boundary detection or image segmentation is an important step in image analysis. However, choosing appropriate parameters for boundary detection algorithms is necessary to achieve good boundary detection results. Image boundary detection fusion with unsupervised parameters can output a final consensus boundary, which is generally better than using unsupervised or supervised image boundary detection algorithms. In this study, we theoretically examine why image boundary detection fusion can work well and we propose a mixture model for image boundary detection fusion (MMIBDF) to achieve good consensus segmentation in an unsupervised manner. All of the segmentation algorithms are treated as new features and the segmentation results obtained by the algorithms are the values of the new features. The MMIBDF is designed to sample the boundary according to a discrete distribution. We present an inference method for MMIBDF and describe the corresponding algorithm in detail. Extensive empirical results demonstrate that MMIBDF significantly outperforms other image boundary detection fusion algorithms and the base image boundary detection algorithms according to most performance indices.

  • Time Synchronization Technique for Mobile Base Stations over TDM-PON-Based Mobile Backhaul Using Precision Time Protocol

    Kazuki TANAKA  Naoya NISHI  Ryo INOHARA  Kosuke NISHIMURA  

     
    PAPER

      Pubricized:
    2017/10/18
      Vol:
    E101-B No:4
      Page(s):
    979-986

    We propose a time synchronization technique for mobile base stations (BSs) by distributing the reference time information from one optical network unit (ONU) to the BSs under different ONUs over Time Division Multiplexing Passive Optical Network (TDM-PON) using common Precision Time Protocol (PTP). The time accuracy, long term time stability and time source switchover functionality for redundancy are confirmed by experimental verification. Furthermore, an interoperability test between a 10G-EPON prototype in which the proposed protocol is implemented and a commercial Time Division Long Term Evolution (TD-LTE) BS is successfully demonstrated obtaining time error within 119ns, which is much less than the criterion value of 1.5µs, for 60 hours.

  • Numerical Analysis of a Tunable Magnetized Plasma Loop Antenna

    Mohammadreza GHADERI  Gholamreza MORADI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/10/06
      Vol:
    E101-B No:4
      Page(s):
    1055-1060

    In this study, a plasma loop tube is presented as a tunable VHF-UHF band plasma antenna. In plasma medium, wave radiation mechanism is due to ionized gas instead of metal. Meanwhile, the most important advantage of plasma elements is electronic tunability rather than the rigid and fixed features of metals. Here, we employ an external magnetic field as a background to affect the plasma without any shape, gas or source manipulation. Finite difference time domain (FDTD) is performed for plasma antenna analysis. The FDTD formulation should be adapted to fluid modeling of plasma in the anisotropic zone in the presence of an external magnetic field. The bandwidth coverage of 700MHz is obtained by designing correctly. Parametric study in return loss, gain and radiation pattern are studied here and other new points are presented as well.

  • Blind Source Separation and Equalization Based on Support Vector Regression for MIMO Systems

    Chao SUN  Ling YANG  Juan DU  Fenggang SUN  Li CHEN  Haipeng XI  Shenglei DU  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2017/08/28
      Vol:
    E101-B No:3
      Page(s):
    698-708

    In this paper, we first propose two batch blind source separation and equalization algorithms based on support vector regression (SVR) for linear time-invariant multiple input multiple output (MIMO) systems. The proposed algorithms combine the conventional cost function of SVR with error functions of classical on-line algorithm for blind equalization: both error functions of constant modulus algorithm (CMA) and radius directed algorithm (RDA) are contained in the penalty term of SVR. To recover all sources simultaneously, the cross-correlations of equalizer outputs are included in the cost functions. Simulation experiments show that the proposed algorithms can recover all sources successfully and compensate channel distortion simultaneously. With the use of iterative re-weighted least square (IRWLS) solution of SVR, the proposed algorithms exhibit low computational complexity. Compared with traditional algorithms, the new algorithms only require fewer samples to achieve convergence and perform a lower residual interference. For multilevel signals, the single algorithms based on constant modulus property usually show a relatively high residual error, then we propose two dual-mode blind source separation and equalization schemes. Between them, the dual-mode scheme based on SVR merely requires fewer samples to achieve convergence and further reduces the residual interference.

  • Regulated Transport Network Design Using Geographical Resolution

    Shohei KAMAMURA  Aki FUKUDA  Rie HAYASHI  Yoshihiko UEMATSU  

     
    PAPER-Network

      Pubricized:
    2017/08/28
      Vol:
    E101-B No:3
      Page(s):
    805-815

    This paper proposes a regulated transport network design algorithm for IP over a dense wavelength division multiplex (DWDM) network. When designing an IP over DWDM network, the network operator should consider not only cost-effectiveness and physical constraints such as wavelength colors and chromatic dispersion but also operational policies such as resilience, quality, stability, and operability. For considering the above polices, we propose to separate the network design algorithm based on a geographical resolution; the policy-based regulated intra-area is designed based on this resolution, and the cost-optimal inter-area is then designed separately, and finally merged. This approach does not necessarily yield a strict optimal solution, but it covers network design work done by humans, which takes a vast amount of time and requires a high skill level. For efficient geographical resolution, we also present fast graph mining algorithm, which can solve NP-hard subgraph isomorphism problem within the practical time. We prove the sufficiency of the resulting network design for the above polices by visualizing the topology, and also prove that the penalty of applying the approach is trivial.

  • Effects of Automated Transcripts on Non-Native Speakers' Listening Comprehension

    Xun CAO  Naomi YAMASHITA  Toru ISHIDA  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2017/11/24
      Vol:
    E101-D No:3
      Page(s):
    730-739

    Previous research has shown that transcripts generated by automatic speech recognition (ASR) technologies can improve the listening comprehension of non-native speakers (NNSs). However, we still lack a detailed understanding of how ASR transcripts affect listening comprehension of NNSs. To explore this issue, we conducted two studies. The first study examined how the current presentation of ASR transcripts impacted NNSs' listening comprehension. 20 NNSs engaged in two listening tasks, each in different conditions: C1) audio only and C2) audio+ASR transcripts. The participants pressed a button whenever they encountered a comprehension problem, and explained each problem in the subsequent interviews. From our data analysis, we found that NNSs adopted different strategies when using the ASR transcripts; some followed the transcripts throughout the listening; some only checked them when necessary. NNSs also appeared to face difficulties following imperfect and slightly delayed transcripts while listening to speech - many reported difficulties concentrating on listening/reading or shifting between the two. The second study explored how different display methods of ASR transcripts affected NNSs' listening experiences. We focused on two display methods: 1) accuracy-oriented display which shows transcripts only after the completion of speech input analysis, and 2) speed-oriented display which shows the interim analysis results of speech input. We conducted a laboratory experiment with 22 NNSs who engaged in two listening tasks with ASR transcripts presented via the two display methods. We found that the more the NNSs paid attention to listening to the audio, the more they tended to prefer the speed-oriented transcripts, and vice versa. Mismatched transcripts were found to have negative effects on NNSs' listening comprehension. Our findings have implications for improving the presentation methods of ASR transcripts to more effectively support NNSs.

  • Efficient Early Termination Criterion for ADMM Penalized LDPC Decoder

    Biao WANG  Xiaopeng JIAO  Jianjun MU  Zhongfei WANG  

     
    LETTER-Coding Theory

      Vol:
    E101-A No:3
      Page(s):
    623-626

    By tracking the changing rate of hard decisions during every two consecutive iterations of the alternating direction method of multipliers (ADMM) penalized decoding, an efficient early termination (ET) criterion is proposed to improve the convergence rate of ADMM penalized decoder for low-density parity-check (LDPC) codes. Compared to the existing ET criterion for ADMM penalized decoding, the proposed method can reduce the average number of iterations significantly at low signal-to-noise ratios with negligible performance degradation.

  • Equilateral Triangular Slot Antenna for Communication System and GNSS RO Sensor of GAIA-I Microsatellite

    Asif AWALUDIN  Josaphat TETUKO SRI SUMANTYO  Koichi ITO  Steven GAO  Achmad MUNIR  Mohd ZAFRI BAHARUDDIN  Cahya EDI SANTOSA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/09/11
      Vol:
    E101-B No:3
      Page(s):
    835-846

    Two wideband circularly polarized (CP) equilateral triangular slot (ETS) antennas are proposed for communication system and the Global Navigation Satellite System (GNSS) Radio Occultation (RO) sensor of the GAIA-I microsatellite. These wide slot antennas use the ring slot antenna CP generation method due to their shape. The compact antennas employ truncated corners, grounded equilateral triangular perturbation patch and branched feed line to create CP radiation. A 3-dB axial ratio bandwidth (ARBW) enhancement is achieved by inserting a pair of slits into the ETS. A parametric study on the influence of those shape modifications in reflection coefficient and axial ratio is presented. An ETS antenna for communication system of the GAIA-I is fabricated and measured, which is shown to agree well with its simulated performance by providing CP fractional bandwidth of 52%. An ETS antenna designed for the GNSS RO sensor of GAIA-I delivers 3-dB ARBW of 41.6%. The ETS antenna offers uni-directional radiation by mounting a 3D printed truncated cone reflector underneath which also enhances antenna gain.

  • Resource Management Architecture of Metro Aggregation Network for IoT Traffic Open Access

    Akira MISAWA  Masaru KATAYAMA  

     
    INVITED PAPER

      Pubricized:
    2017/09/19
      Vol:
    E101-B No:3
      Page(s):
    620-627

    IoT (Internet of Things) services are emerging and the bandwidth requirements for rich media communication services are increasing exponentially. We propose a virtual edge architecture comprising computation resource management layers and path bandwidth management layers for easy addition and reallocation of new service node functions. These functions are performed by the Virtualized Network Function (VNF), which accommodates terminals covering a corresponding access node to realize fast VNF migration. To increase network size for IoT traffic, VNF migration is limited to the VNF that contains the active terminals, which leads to a 20% reduction in the computation of VNF migration. Fast dynamic bandwidth allocation for dynamic bandwidth paths is realized by proposed Hierarchical Time Slot Allocation of Optical Layer 2 Switch Network, which attain the minimum calculation time of less than 1/100.

  • Extraction of Library Update History Using Source Code Reuse Detection

    Kanyakorn JEWMAIDANG  Takashi ISHIO  Akinori IHARA  Kenichi MATSUMOTO  Pattara LEELAPRUTE  

     
    LETTER-Software Engineering

      Pubricized:
    2017/12/20
      Vol:
    E101-D No:3
      Page(s):
    799-802

    This paper proposes a method to extract and visualize a library update history in a project. The method identifies reused library versions by comparing source code in a product with existing versions of the library so that developers can understand when their own copy of a library has been copied, modified, and updated.

  • Multiple Matrix Rank Minimization Approach to Audio Declipping

    Ryohei SASAKI  Katsumi KONISHI  Tomohiro TAKAHASHI  Toshihiro FURUKAWA  

     
    LETTER-Speech and Hearing

      Pubricized:
    2017/12/06
      Vol:
    E101-D No:3
      Page(s):
    821-825

    This letter deals with an audio declipping problem and proposes a multiple matrix rank minimization approach. We assume that short-time audio signals satisfy the autoregressive (AR) model and formulate the declipping problem as a multiple matrix rank minimization problem. To solve this problem, an iterative algorithm is provided based on the iterative partial matrix shrinkage (IPMS) algorithm. Numerical examples show its efficiency.

  • Adaptive Extrinsic Information Scaling for Concatenated Zigzag Codes Based on Max-Log-APP

    Hao ZHENG  Xingan XU  Changwei LV  Yuanfang SHANG  Guodong WANG  Chunlin JI  

     
    LETTER-Coding Theory

      Vol:
    E101-A No:3
      Page(s):
    627-631

    Concatenated zigzag (CZ) codes are classified as one kind of parallel-concatenated codes with powerful performance and low complexity. This kind of codes has flexible implementation methods and a good application prospect. We propose a modified turbo-type decoder and adaptive extrinsic information scaling method based on the Max-Log-APP (MLA) algorithm, which can provide a performance improvement also under the relatively low decoding complexity. Simulation results show that the proposed method can effectively help the sub-optimal MLA algorithm to approach the optimal performance. Some contrasts with low-density parity-check (LDPC) codes are also presented in this paper.

  • Analysis of a Sufficient Condition on the Optimality of a Decoded Codeword of Soft-Decision Decodings for Binary Linear Codes on a 4-Level Quantization over an AWGN Channel

    Takuya KUSAKA  

     
    PAPER-Coding Theory

      Vol:
    E101-A No:3
      Page(s):
    570-576

    In this paper, a study of a sufficient condition on the optimality of a decoded codeword of soft-decision decodings for binary linear codes is shown for a quantized case. A typical uniform 4-level quantizer for soft-decision decodings is employed for the analysis. Simulation results on the (64,42,8) Reed-Muller code indicates that the condition is effective for SN ratios at 3[dB] or higher for any iterative style optimum decodings.

  • A Bandwidth Allocation Scheme to Improve Fairness and Link Utilization in Data Center Networks

    Yusuke ITO  Hiroyuki KOGA  Katsuyoshi IIDA  

     
    PAPER

      Pubricized:
    2017/09/19
      Vol:
    E101-B No:3
      Page(s):
    679-687

    Cloud computing, which enables users to enjoy various Internet services provided by data centers (DCs) at anytime and anywhere, has attracted much attention. In cloud computing, however, service quality degrades with user distance from the DC, which is unfair. In this study, we propose a bandwidth allocation scheme based on collectable information to improve fairness and link utilization in DC networks. We have confirmed the effectiveness of this approach through simulation evaluations.

  • The Estimation of Satellite Attitude Using the Radar Cross Section Sequence and Particle Swarm Optimization

    Jidong QIN  Jiandong ZHU  Huafeng PENG  Tao SUN  Dexiu HU  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:3
      Page(s):
    595-599

    The existing methods to estimate satellite attitude by using radar cross section (RCS) sequence suffer from problems such as low precision, computation complexity, etc. To overcome these problems, a novel model of satellite attitude estimation by the local maximum points of the RCS sequence is established and can reduce the computational time by downscaling the dimension of the feature vector. Moreover, a particle swarm optimization method is adopted to improve efficiency of computation. Numerical simulations show that the proposed method is robust and efficient.

  • Optimal ZCZ Complementary Sequence Sets with Low Column Sequence PMEPR

    Yubo LI  Liying TIAN  Shengyi LIU  

     
    LETTER-Information Theory

      Vol:
    E101-A No:3
      Page(s):
    612-616

    In this letter, based on orthogonal Golay sequence sets and orthogonal matrices, general constructions of zero correlation zone (ZCZ) aperiodic complementary sequence (ZACS) sets are proposed. The resultant ZACSs have column sequence peak-to-mean envelop power ratio (PMEPR) of at most 2, and the parameters of the sequence sets are optimal with respect to the theoretical bound. The novel ZACS sets are suitable for approximately synchronized multi-carrier CDMA (MC-CDMA) communication systems.

  • Network Congestion Minimization Models Based on Robust Optimization

    Bimal CHANDRA DAS  Satoshi TAKAHASHI  Eiji OKI  Masakazu MURAMATSU  

     
    PAPER-Network

      Pubricized:
    2017/09/14
      Vol:
    E101-B No:3
      Page(s):
    772-784

    This paper introduces robust optimization models for minimization of the network congestion ratio that can handle the fluctuation in traffic demands between nodes. The simplest and widely used model to minimize the congestion ratio, called the pipe model, is based on precisely specified traffic demands. However, in practice, network operators are often unable to estimate exact traffic demands as they can fluctuate due to unpredictable factors. To overcome this weakness, we apply robust optimization to the problem of minimizing the network congestion ratio. First, we review existing models as robust counterparts of certain uncertainty sets. Then we consider robust optimization assuming ellipsoidal uncertainty sets, and derive a tractable optimization problem in the form of second-order cone programming (SOCP). Furthermore, we take uncertainty sets to be the intersection of ellipsoid and polyhedral sets, and considering the mirror subproblems inherent in the models, obtain tractable optimization problems, again in SOCP form. Compared to the previous model that assumes an error interval on each coordinate, our models have the advantage of being able to cope with the total amount of errors by setting a parameter that determines the volume of the ellipsoid. We perform numerical experiments to compare our SOCP models with the existing models which are formulated as linear programming problems. The results demonstrate the relevance of our models in terms of congestion ratio and computation time.

  • Network-Listening Based Synchronization with Loop-Back Interference Avoidance Using Synchronization Signal

    Mitsukuni KONISHI  Sho NABATAME  Daigo OGATA  Atsushi NAGATE  Teruya FUJII  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/09/11
      Vol:
    E101-B No:3
      Page(s):
    885-896

    Network-listening-based synchronization is recently attracting attention as an effective timing synchronization method for indoor small-cell base stations as they cannot utilize GPS-based synchronization. It uses only the macro-cell downlink signal to establish synchronization with the overlaying macro cell. However, the loop-back signal from the small-cell base station itself interferes with the reception of the macro-cell downlink signal in the deployment of co-channel heterogeneous networks. In this paper, we investigate a synchronization method that avoids loop-back interference by muting small-cell data transmission and shifting small-cell transmission timing. Our proposal enables to reduce the processing burden of the network listening and mitigate the throughput degradation of the small cell caused by the data-transmission mutation. In addition to this, the network-listening system enables the network listening in dense small cell deployments where a large number of neighboring small cells exist. We clarify the performance of our proposal by computer simulations and laboratory experiments on actual equipment.

  • Phase Locking and Frequency Tuning of Resonant-Tunneling-Diode Terahertz Oscillators

    Kota OGINO  Safumi SUZUKI  Masahiro ASADA  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Vol:
    E101-C No:3
      Page(s):
    183-185

    Phase locking with frequency tuning is demonstrated for a resonant-tunneling-diode terahertz oscillator integrated with a biased varactor diode. The tuning range of oscillation frequency is 606-613GHz. The phase noise in the output of the oscillator is transformed to amplitude noise, and fed back to the varactor diode together with bias voltage. The spectral linewidth at least <2Hz was obtained at the oscillation frequencies tuned by the bias voltage of the varactor diode.

  • Byzantine-Tolerant Gathering of Mobile Agents in Arbitrary Networks with Authenticated Whiteboards

    Masashi TSUCHIDA  Fukuhito OOSHITA  Michiko INOUE  

     
    PAPER

      Pubricized:
    2017/12/19
      Vol:
    E101-D No:3
      Page(s):
    602-610

    We propose an algorithm for the gathering problem of mobile agents in arbitrary networks (graphs) with Byzantine agents. Our algorithm can make all correct agents meet at a single node in O(fm) time (f is the upper bound of the number of Byzantine agents and m is the number of edges) under the assumption that agents have unique ID and behave synchronously, each node is equipped with an authenticated whiteboard, and f is known to agents. Here, the whiteboard is a node memory where agents can leave information. Since the existing algorithm achieves gathering without a whiteboard in Õ(n9λ) time, where n is the number of nodes and λ is the length of the longest ID, our algorithm shows an authenticated whiteboard can significantly reduce the time for the gathering problem in Byzantine environments.

861-880hit(5900hit)