The search functionality is under construction.

Keyword Search Result

[Keyword] active inductor(10hit)

1-10hit
  • On-Chip Supply Noise Suppression Technique Using Active Inductor

    Jaejun LEE  Sungho LEE  Sangwook NAM  

     
    LETTER-Electromagnetic Theory

      Vol:
    E94-C No:5
      Page(s):
    917-919

    This paper presents a circuit that improves supply noise rejection using an active inductor circuit. Compared to the conventional designs, the proposed supply noise suppression circuit has better characteristics such as low current consumption and small die size with noise rejection. The circuit was fabricated using 0.13 µm UMC CMOS technology. The experimental results showed that the supply noise was suppressed by 61% with only an increase in size of 20.0 µm 2.5 µm, and the current consumption was under 2 mA.

  • Low-Voltage Operational Active Inductor for LNA Circuit

    Masaaki SODA  Ningyi WANG  Michio YOTSUYANAGI  

     
    PAPER-Circuit Design

      Vol:
    E93-A No:12
      Page(s):
    2609-2615

    A low voltage operational active inductor circuit is attractive for spiral-inductor-less LNA because of realizing high gain and low voltage operation simultaneously. In this paper, a simply structured low-voltage operational active inductor to enhance the amplifier gain is introduced and analyzed. This active inductor, which utilizes a transistor load operated in the triode region and a source follower, features a small DC voltage drop suitable for low voltage LNAs. An LNA using the active inductor load was designed with an input matching circuit using 90 nm CMOS technology. The LNA tuned to 2.4 GHz operation has 19.5 dB of the internal gain. In addition, the frequency characteristics are easily varied by changing the capacitance value in the active inductor circuit. The core circuit occupies only 0.0026 mm2 and consumes 2.8 mW with 1.2 V supply voltage.

  • Monolithic Gyrators Using Resonant Tunneling Diodes and Application to Active Inductors

    Michihiko SUHARA  Eri UEKI  Tsugunori OKUMURA  

     
    PAPER-Emerging Devices

      Vol:
    E91-C No:7
      Page(s):
    1070-1075

    Monolithic gyrators are proposed on the basis of integrating resonant tunneling diodes (RTDs) and HEMT toward realization of broadband and high-Q passives. Feasibility of millimeter-wave active inductors using the gyrator are described with equivalent circuit analysis and numerical calculations assuming InP based RTDs and a HEMT to be integrated.

  • A High-Q Active Inductor Circuit for Quasi-Millimeter-Wave Frequency Range

    Toru MASUDA  Yukio HATTORI  Hiroki SHIKAMA  Akira HYOGO  

     
    PAPER

      Vol:
    E91-C No:6
      Page(s):
    862-870

    This paper describes a novel high-Q active inductor circuit configuration composed of an operational transconductance amplifier (OTA) and an input RC network. Due to the phase rotation made by the input RC network, the active inductor circuit provides high-Q inductive impedance at higher frequencies. According to circuit simulation with design-kit of a 90-GHz-fT SiGe HBT technology, an inductance of more than 0.53 nH and Q of more than 80 can be obtained at quasi-millimeter-wave frequency, 24 GHz. The Q value is tunable by controlling the transconductance of the OTA. These features are also ensured by means of measurements of fabricated active inductor circuit. Since the active inductor circuit needs small chip area, which is 25% of a conventional passive inductor, the proposed active inductor contributes to implement a cost-effective high-Q notch filter for frequencies up to quasi-millimeter-wave frequencies.

  • A Wide Locking Range Injection Locked Frequency Divider with Quadrature Outputs

    Sheng-Lyang JANG  Cheng-Chen LIU  Jhin-Fang HUANG  

     
    PAPER-Electronic Circuits

      Vol:
    E91-C No:3
      Page(s):
    373-377

    This paper presents a quadrature injection locked frequency divider (ILFD) employing tunable active inductors (TAIs), which are used is to extend the locking range and to reduce die area. The CMOS ILFD is based on a new quadrature voltage-controlled oscillator (VCO) with cross-coupled switching pairs and TAI-C tanks, and was fabricated in the 0.18-µm 1P6M CMOS technology. The divide-by-2 LC-tank ILFD is performed by adding injection MOSFETs between the differential outputs of the VCO. Measurement results show that at the supply voltage of 1.8 V, the divider free-running frequency is tunable from 1.34 GHz to 3.07 GHz, and at the incident power of 0 dBm the locking range is about 6 GHz (137%), from the incident frequency 1.37 GHz to 7.38 GHz. The core power consumption is 22.8 mW. The die area is 0.630.55 mm2.

  • CMOS RF Band-Pass Filter Design Using the High Quality Active Inductor

    Kung-Hao LIANG  Chien-Chih HO  Chin-Wei KUO  Yi-Jen CHAN  

     
    PAPER-Electronic Circuits

      Vol:
    E88-C No:12
      Page(s):
    2372-2376

    A high quality-factor of active inductor has been implemented by using the 0.18 µm 1P6M CMOS technologies in this work. By adding a feedback resistance and a regulated gain stage transistor into the conventional cascade-grounded approach, the quality-factor and performance of CMOS active inductor can be improved. This novel active inductor demonstrated a maximum quality-factor of 540 and a 3.2 nH inductance at 4.3 GHz, where the self-resonant frequency was 5.4 GHz. An active CMOS bandpass filter was also fabricated including this tunable high quality factor active inductor, performing an insertion loss of 0.2 dB and a return loss more than 32 dB with a tuning range from 3.45 GHz to 3.6 GHz. The input IP3 was -2.4 dBm, and the noise figure was 14.1 dB with a 28 mW dc power consumption.

  • 0.18-µm CMOS 10-Gb/s Current-Mode Serial Link Transmitters

    Fei YUAN  Jean JIANG  

     
    PAPER-Communications and Wireless Systems

      Vol:
    E88-D No:8
      Page(s):
    1863-1869

    This paper presents the design of new fully differential CMOS class A and class AB current-mode transmitters for multi-Gbps serial links. A high multiplexing speed is achieved by multiplexing at low-impedance nodes and inductive shunt peaking with active inductors. The fully complementary operation of the multiplexers and the fully differential configuration of the transmitters minimizes the effect of common-mode disturbances and that of EMI from channels to neighboring devices. Large output current swing is obtained by making use of differential current amplifiers and the differential rail-to-rail configuration. The constant current drawn from the supply voltage minimizes the noise injected into the substrate. The transmitters have been implemented in TSMC's 1.8 V 0.18 µm CMOS technology and analyzed using Spectre from Cadence Design Systems with BSIM3V device models. Simulation results confirm that the proposed transmitters are capable of transmitting data at 10 Gbps.

  • Loss Compensation in RF CMOS Active Inductor Using a Capacitor

    Jyh-Neng YANG  Ming-Juei WU  Chen-Yi LEE  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E87-C No:12
      Page(s):
    2198-2201

    Loss compensation in a RF CMOS active inductor with using a capacitor is proposed. This simple compensation technique yields a negative conductance characteristic that can compensate for the constant internal loss of active devices. Simulation results show that the inductor obtains a maximum Q-value of 1.2E8, an inductance value in the range of 50 nH to 450 nH, and a 1.4E-6 Ω of minimum total equivalent loss in the range of 0.6 GHz to 1.3 GHz.

  • Improving RF CMOS Active Inductor by Simple Loss Compensation Network

    Chen-Yi LEE  Jyh-Neng YANG  Yi-Chang CHENG  

     
    LETTER-Communication Devices/Circuits

      Vol:
    E87-B No:6
      Page(s):
    1681-1683

    An RF CMOS active inductor with a novel loss compensation circuit network is proposed. Performance of this active inductor can be improved by adding a novel network, which simultaneously reduces parallel and series losses. Consequently, this technique not only increases Q value, inductance, and operating frequency, but also reduces power consumption and circuit complexity. Simulation results show that better performance indices can be achieved, such as minimum total equivalent loss of 1 mΩ, maximum Q value about 3E5, and inductance value from 20 nH to 45 nH in the RF range of 0.6 GHz to 1.6 GHz. Power dissipation is around 1.76 mW under 2.5 V dc supply voltage.

  • A Novel RF CMOS Active Inductor

    Jyh-Neng YANG  Yi-Chang CHENG  Chen-Yi LEE  

     
    LETTER-Communication Devices/Circuits

      Vol:
    E86-B No:7
      Page(s):
    2190-2192

    A novel RF CMOS high Q-value active inductor is proposed in this work by using simple cascode RC feedback compensation technique. The performance of this active inductor has maximum Q-value about 1.2E6, inductance value from 3.5 nH to 4.5 nH and 3E-5Ω of minimum total equivalent loss, in the range of 1.2 GHz to 2 GHz.