The search functionality is under construction.

Keyword Search Result

[Keyword] affinity(18hit)

1-18hit
  • Ambipolar Conduction of λ-DNA Transistor Fabricated on SiO2/Si Structure

    Naoto MATSUO  Kazuki YOSHIDA  Koji SUMITOMO  Kazushige YAMANA  Tetsuo TABEI  

     
    PAPER-Semiconductor Materials and Devices

      Pubricized:
    2022/01/26
      Vol:
    E105-C No:8
      Page(s):
    369-374

    This paper reports on the ambipolar conduction for the λ-Deoxyribonucleic Acid (DNA) field effect transistor (FET) with 450, 400 and 250 base pair experimentally and theoretically. It was found that the drain current of the p-type DNA/Si FET increased as the ratio of the guanine-cytosine (GC) pair increased and that of the n-type DNA/Si FET decreased as the ratio of the adenine-thymine (AT) pair decreased, and the ratio of the GC pair and AT pair was controlled by the total number of the base pair. In addition, it was found that the hole conduction mechanism of the 400 bp DNA/Si FET was polaron hopping and its activation energy was 0.13eV. By considering the electron affinity of the adenine, thymine, guanine, and cytosine, the ambipolar characteristics of the DNA/Si FET was understood. The holes are injected to the guanine base for the negative gate voltage, and the electrons are injected to the adenine, thymine, and cytosine for the positive gate voltage.

  • An Enhanced Affinity Graph for Image Segmentation

    Guodong SUN  Kai LIN  Junhao WANG  Yang ZHANG  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2019/02/04
      Vol:
    E102-D No:5
      Page(s):
    1073-1080

    This paper proposes an enhanced affinity graph (EA-graph) for image segmentation. Firstly, the original image is over-segmented to obtain several sets of superpixels with different scales, and the color and texture features of the superpixels are extracted. Then, the similarity relationship between neighborhood superpixels is used to construct the local affinity graph. Meanwhile, the global affinity graph is obtained by sparse reconstruction among all superpixels. The local affinity graph and global affinity graph are superimposed to obtain an enhanced affinity graph for eliminating the influences of noise and isolated regions in the image. Finally, a bipartite graph is introduced to express the affiliation between pixels and superpixels, and segmentation is performed using a spectral clustering algorithm. Experimental results on the Berkeley segmentation database demonstrate that our method achieves significantly better performance compared to state-of-the-art algorithms.

  • An Efficient Parallel Coding Scheme in Erasure-Coded Storage Systems

    Wenrui DONG  Guangming LIU  

     
    PAPER-Computer System

      Pubricized:
    2017/12/12
      Vol:
    E101-D No:3
      Page(s):
    627-643

    Erasure codes have been considered as one of the most promising techniques for data reliability enhancement and storage efficiency in modern distributed storage systems. However, erasure codes often suffer from a time-consuming coding process which makes them nearly impractical. The opportunity to solve this problem probably rely on the parallelization of erasure-code-based application on the modern multi-/many-core processors to fully take advantage of the adequate hardware resources on those platforms. However, the complicated data allocation and limited I/O throughput pose a great challenge on the parallelization. To address this challenge, we propose a general multi-threaded parallel coding approach in this work. The approach consists of a general multi-threaded parallel coding model named as MTPerasure, and two detailed parallel coding algorithms, named as sdaParallel and ddaParallel, respectively, adapting to different I/O circumstances. MTPerasure is a general parallel coding model focusing on the high level data allocation, and it is applicable for all erasure codes and can be implemented without any modifications of the low level coding algorithms. The sdaParallel divides the data into several parts and the data parts are allocated to different threads statically in order to eliminate synchronization latency among multiple threads, which improves the parallel coding performance under the dummy I/O mode. The ddaParallel employs two threads to execute the I/O reading and writing on the basis of small pieces independently, which increases the I/O throughput. Furthermore, the data pieces are assigned to the coding thread dynamically. A special thread scheduling algorithm is also proposed to reduce thread migration latency. To evaluate our proposal, we parallelize the popular open source library jerasure based on our approach. And a detailed performance comparison with the original sequential coding program indicates that the proposed parallel approach outperforms the original sequential program by an extraordinary speedups from 1.4x up to 7x, and achieves better utilization of the computation and I/O resources.

  • Protocol-Aware Packet Scheduling Algorithm for Multi-Protocol Processing in Multi-Core MPL Architecture

    Runzi ZHANG  Jinlin WANG  Yiqiang SHENG  Xiao CHEN  Xiaozhou YE  

     
    PAPER-Architecture

      Pubricized:
    2017/07/14
      Vol:
    E100-D No:12
      Page(s):
    2837-2846

    Cache affinity has been proved to have great impact on the performance of packet processing applications on multi-core platforms. Flow-based packet scheduling can make the best of data cache affinity with flow associated data and context structures. However, little work on packet scheduling algorithms has been conducted when it comes to instruction cache (I-Cache) affinity in modified pipelining (MPL) architecture for multi-core systems. In this paper, we propose a protocol-aware packet scheduling (PAPS) algorithm aiming at maximizing I-Cache affinity at protocol dependent stages in MPL architecture for multi-protocol processing (MPP) scenario. The characteristics of applications in MPL are analyzed and a mapping model is introduced to illustrate the procedure of MPP. Besides, a stage processing time model for MPL is presented based on the analysis of multi-core cache hierarchy. PAPS is a kind of flow-based packet scheduling algorithm and it schedules flows in consideration of both application-level protocol of flows and load balancing. Experiments demonstrate that PAPS outperforms the Round Robin algorithm and the HRW-based (HRW) algorithm for MPP applications. In particular, PAPS can eliminate all I-Cache misses at protocol dependent stage and reduce the average CPU cycle consumption per packet by more than 10% in comparison with HRW.

  • Affinity Propagation Algorithm Based Multi-Source Localization Method for Binary Detection

    Yan WANG  Long CHENG  Jian ZHANG  

     
    LETTER-Information Network

      Pubricized:
    2017/05/10
      Vol:
    E100-D No:8
      Page(s):
    1916-1919

    Wireless sensor network (WSN) has attracted many researchers to investigate it in recent years. It can be widely used in the areas of surveillances, health care and agriculture. The location information is very important for WSN applications such as geographic routing, data fusion and tracking. So the localization technology is one of the key technologies for WSN. Since the computational complexity of the traditional source localization is high, the localization method can not be used in the sensor node. In this paper, we firstly introduce the Neyman-Pearson criterion based detection model. This model considers the effect of false alarm and missing alarm rate, so it is more realistic than the binary and probability model. An affinity propagation algorithm based localization method is proposed. Simulation results show that the proposed method provides high localization accuracy.

  • Contribution of Treatment Temperature on Quantum Efficiency of Negative Electron Affinity (NEA)-GaAs

    Yuta INAGAKI  Kazuya HAYASE  Ryosuke CHIBA  Hokuto IIJIMA  Takashi MEGURO  

     
    PAPER

      Vol:
    E99-C No:3
      Page(s):
    371-375

    Quantum efficiency (QE) evolution by several negative electron affinity (NEA) activation process for p-doped GaAs(100) specimen has been studied. We have carried out the surface pretreatment at 580°C or 480°C and the successive NEA activation process at room temperature (R.T.). When the NEA surface was degraded, the surface was refreshed by above pretreatment and activation process, and approximately 0.10 of QE was repeatedly obtained. It was found that the higher QE of 0.13 was achieved with the reduced pretreatment temperature at 480°C with the specific experimental conditions. This is probably caused by the residual Cs-related compounds playing an important role of the electron emission. In addition, after the multiple pretreatment and activation sequence, surface morphology of GaAs remarkably changed.

  • STM Study on Adsorption Structures of Cs on the As-Terminated GaAs(001) (2×4) Surface by Alternating Supply of Cs and O2

    Masayuki HIRAO  Daichi YAMANAKA  Takanori YAZAKI  Jun OSAKO  Hokuto IIJIMA  Takao SHIOKAWA  Hikota AKIMOTO  Takashi MEGURO  

     
    PAPER

      Vol:
    E99-C No:3
      Page(s):
    376-380

    Negative electron affinity (NEA) surfaces can be formed by alternating supply of alkali metals (e.g. Cs, Rb, K) and oxygen on semiconductor surfaces. We have studied adsorption structures of Cs on an As-terminated (2×4) (001) GaAs surface using scanning tunneling microscopy (STM). We found that the initial adsorption of Cs atoms occurs around the step sites in the form of Cs clusters and that the size of clusters is reduced by successive exposure to O2, indicating that As-terminated (2×4) surfaces are relatively stable compared to Ga-terminated surfaces and are not broken by the Cs clusters adsorption.

  • Discriminative Reference-Based Scene Image Categorization

    Qun LI  Ding XU  Le AN  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2014/07/22
      Vol:
    E97-D No:10
      Page(s):
    2823-2826

    A discriminative reference-based method for scene image categorization is presented in this letter. Reference-based image classification approach combined with K-SVD is approved to be a simple, efficient, and effective method for scene image categorization. It learns a subspace as a means of randomly selecting a reference-set and uses it to represent images. A good reference-set should be both representative and discriminative. More specifically, the reference-set subspace should well span the data space while maintaining low redundancy. To automatically select reference images, we adapt affinity propagation algorithm based on data similarity to gather a reference-set that is both representative and discriminative. We apply the discriminative reference-based method to the task of scene categorization on some benchmark datasets. Extensive experiment results demonstrate that the proposed scene categorization method with selected reference set achieves better performance and higher efficiency compared to the state-of-the-art methods.

  • Efficient Indoor Fingerprinting Localization Technique Using Regional Propagation Model

    Genming DING  Zhenhui TAN  Jinsong WU  Jinbao ZHANG  

     
    PAPER-Sensing

      Vol:
    E97-B No:8
      Page(s):
    1728-1741

    The increasing demand of indoor location based service (LBS) has promoted the development of localization techniques. As an important alternative, fingerprinting localization technique can achieve higher localization accuracy than traditional trilateration and triangulation algorithms. However, it is computational expensive to construct the fingerprint database in the offline phase, which limits its applications. In this paper, we propose an efficient indoor positioning system that uses a new empirical propagation model, called regional propagation model (RPM), which is based on the cluster based propagation model theory. The system first collects the sparse fingerprints at some certain reference points (RPs) in the whole testing scenario. Then affinity propagation clustering algorithm operates on the sparse fingerprints to automatically divide the whole scenario into several clusters or sub-regions. The parameters of RPM are obtained in the next step and are further used to recover the entire fingerprint database. Finally, the location estimation is obtained through the weighted k-nearest neighbor algorithm (WkNN) in the online localization phase. We also theoretically analyze the localization accuracy of the proposed algorithm. The numerical results demonstrate that the proposed propagation model can predict the received signal strength (RSS) values more accurately than other models. Furthermore, experiments also show that the proposed positioning system achieves higher localization accuracy than other existing systems while cutting workload of fingerprint calibration by more than 50% in the offline phase.

  • An Efficient I/O Aggregator Assignment Scheme for Multi-Core Cluster Systems

    Kwangho CHA  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E96-D No:2
      Page(s):
    259-269

    As the number of nodes in high-performance computing (HPC) systems increases, parallel I/O becomes an important issue: collective I/O is the specialized parallel I/O that provides the function of single-file based parallel I/O. Collective I/O in most message passing interface (MPI) libraries follows a two-phase I/O scheme in which the particular processes, namely I/O aggregators, perform important roles by engaging the communications and I/O operations. This approach, however, is based on a single-core architecture. Because modern HPC systems use multi-core computational nodes, the roles of I/O aggregators need to be re-evaluated. Although there have been many previous studies that have focused on the improvement of the performance of collective I/O, it is difficult to locate a study regarding the assignment scheme for I/O aggregators that considers multi-core architectures. In this research, it was discovered that the communication costs in collective I/O differed according to the placement of the I/O aggregators, where each node had multiple I/O aggregators. The performance with the two processor affinity rules was measured and the results demonstrated that the distributed affinity rule used to locate the I/O aggregators in different sockets was appropriate for collective I/O. Because there may be some applications that cannot use the distributed affinity rule, the collective I/O scheme was modified in order to guarantee the appropriate placement of the I/O aggregators for the accumulated affinity rule. The performance of the proposed scheme was examined using two Linux cluster systems, and the results demonstrated that the performance improvements were more clearly evident when the computational node of a given cluster system had a complicated architecture. Under the accumulated affinity rule, the performance improvements between the proposed scheme and the original MPI-IO were up to approximately 26.25% for the read operation and up to approximately 31.27% for the write operation.

  • Simple Local Multicast Tree Extension against Intermittently Disconnected State by Exploiting Motion Affinity

    Kwang Bin IM  Kyungran KANG  Young-Jong CHO  

     
    LETTER-Network

      Vol:
    E94-B No:2
      Page(s):
    565-568

    This letter proposes a simple k-hop flooding scheme for the temporarily lost child node of a multicast tree in a mobile ad hoc network where a group of nodes move together within a bound. Through simulation, we show that our scheme improves the packet delivery ratio of MAODV to be comparable to the epidemic routing with only small additional duplicate packets.

  • An Adaptive Niching EDA with Balance Searching Based on Clustering Analysis

    Benhui CHEN  Jinglu HU  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E93-A No:10
      Page(s):
    1792-1799

    For optimization problems with irregular and complex multimodal landscapes, Estimation of Distribution Algorithms (EDAs) suffer from the drawback of premature convergence similar to other evolutionary algorithms. In this paper, we propose an adaptive niching EDA based on Affinity Propagation (AP) clustering analysis. The AP clustering is used to adaptively partition the niches and mine the searching information from the evolution process. The obtained information is successfully utilized to improve the EDA performance by using a balance niching searching strategy. Two different categories of optimization problems are used to evaluate the proposed adaptive niching EDA. The first one is solving three benchmark functional multimodal optimization problems by a continuous EDA based on single Gaussian probabilistic model; the other one is solving a real complicated discrete EDA optimization problem, the HP model protein folding based on k-order Markov probabilistic model. Simulation results show that the proposed adaptive niching EDA is an efficient method.

  • On Identifying Useful Patterns to Analyze Products in Retail Transaction Databases

    Unil YUN  

     
    PAPER-Data Mining

      Vol:
    E92-D No:12
      Page(s):
    2430-2438

    Mining correlated patterns in large transaction databases is one of the essential tasks in data mining since a huge number of patterns are usually mined, but it is hard to find patterns with the correlation. The needed data analysis should be made according to the requirements of the particular real application. In previous mining approaches, patterns with the weak affinity are found even with a high minimum support. In this paper, we suggest weighted support affinity pattern mining in which a new measure, weighted support confidence (ws-confidence) is developed to identify correlated patterns with the weighted support affinity. To efficiently prune the weak affinity patterns, we prove that the ws-confidence measure satisfies the anti-monotone and cross weighted support properties which can be applied to eliminate patterns with dissimilar weighted support levels. Based on the two properties, we develop a weighted support affinity pattern mining algorithm (WSP). The weighted support affinity patterns can be useful to answer the comparative analysis queries such as finding itemsets containing items which give similar total selling expense levels with an acceptable error range α% and detecting item lists with similar levels of total profits. In addition, our performance study shows that WSP is efficient and scalable for mining weighted support affinity patterns.

  • Robust Speaker Clustering Using Affinity Propagation

    Xiang ZHANG  Ping LU  Hongbin SUO  Qingwei ZHAO  Yonghong YAN  

     
    LETTER-Speech and Hearing

      Vol:
    E91-D No:11
      Page(s):
    2739-2741

    In this letter, a recently proposed clustering algorithm named affinity propagation is introduced for the task of speaker clustering. This novel algorithm exhibits fast execution speed and finds clusters with low error. However, experiments show that the speaker purity of affinity propagation is not satisfying. Thus, we propose a hybrid approach that combines affinity propagation with agglomerative hierarchical clustering to improve the clustering performance. Experiments show that compared with traditional agglomerative hierarchical clustering, the hybrid method achieves better performance on the test corpora.

  • An Improved Clonal Selection Algorithm and Its Application to Traveling Salesman Problems

    Shangce GAO  Zheng TANG  Hongwei DAI  Jianchen ZHANG  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E90-A No:12
      Page(s):
    2930-2938

    The clonal selection algorithm (CS), inspired by the basic features of adaptive immune response to antigenic stimulus, can exploit and explore the solution space parallelly and effectively. However, antibody initialization and premature convergence are two problems of CS. To overcome these two problems, we propose a chaotic distance-based clonal selection algorithm (CDCS). In this novel algorithm, we introduce a chaotic initialization mechanism and a distance-based somatic hypermutation to improve the performance of CS. The proposed algorithm is also verified for numerous benchmark traveling salesman problems. Experimental results show that the improved algorithm proposed in this paper provides better performance when compared to other metaheuristics.

  • A Novel Clonal Selection Algorithm and Its Application to Traveling Salesman Problem

    Shangce GAO  Hongwei DAI  Gang YANG  Zheng TANG  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E90-A No:10
      Page(s):
    2318-2325

    The Clonal Selection Algorithm (CSA) is employed by the natural immune system to define the basic features of an immune response to an antigenic stimulus. In the immune response, according to Burnet's clonal selection principle, the antigen imposes a selective pressure on the antibody population by allowing only those cells which specifically recognize the antigen to be selected for proliferation and differentiation. However ongoing investigations indicate that receptor editing, which refers to the process whereby antigen receptor engagement leads to a secondary somatic gene rearrangement event and alteration of the receptor specificity, is occasionally found in affinity maturation process. In this paper, we extend the traditional CSA approach by incorporating the receptor editing method, named RECSA, and applying it to the Traveling Salesman Problem. Thus, both somatic hypermutation (HM) of clonal selection theory and receptor editing (RE) are utilized to improve antibody affinity. Simulation results and comparisons with other general algorithms show that the RECSA algorithm can effectively enhance the searching efficiency and greatly improve the searching quality within reasonable number of generations.

  • Affinity Based Lateral Interaction Artificial Immune System

    Hongwei DAI  Zheng TANG  Yu YANG  Hiroki TAMURA  

     
    PAPER-Human-computer Interaction

      Vol:
    E89-D No:4
      Page(s):
    1515-1524

    Immune system protects living body from various attacks by foreign invades. Based on the immune response principles, we propose an improved lateral interaction artificial immune system model in this paper. Considering that the different epitopes on the surface of antigen can be recognized by a set of different paratopes expressed on the surface of immune cells, we build a neighborhood set that consists of immune cells with different affinities to a certain input antigen. We update all the weights of the immune cells located in neighborhood set according to their affinities. Simulations on noisy pattern recognition illustrate that the proposed artificial immune system model has stronger noise tolerance ability and is more effective at recognizing noisy patterns than that of our previous models.

  • A Significant Property of Mapping Parameters for Signal Interpolation Using Fractal Interpolation Functions

    Satoshi UEMURA  Miki HASEYAMA  Hideo KITAJIMA  

     
    LETTER-Digital Signal Processing

      Vol:
    E87-A No:3
      Page(s):
    748-752

    This letter presents a significant property of the mapping parameters that play a central role to represent a given signal in Fractal Interpolation Functions (FIF). Thanks to our theoretical analysis, it is derived that the mapping parameters required to represent a given signal are also applicable to represent the upsampled signal of a given one. Furthermore, the upsampled signal obtained by using the property represents the self-affine property more distinctly than the given signal. Experiments show the validity and usefulness of the significant property.