The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] channel(1697hit)

361-380hit(1697hit)

  • Outage Probability of N-th Best User Selection in Multiuser Two-Way Relay Networks over Nakagami-m Fading

    Jie YANG  Yingying YUAN  Nan YANG  Kai YANG  Xiaofei ZHANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E97-A No:9
      Page(s):
    1987-1993

    We analyze the outage probability of the multiuser two-way relay network (TWRN) where the N-th best mobile user (MU) out of M MUs and the base station (BS) exchange messages with the aid of an amplify-and-forward relay. In the analysis, we focus on the practical unbalanced Nakagami-m fading between the MUs-relay link and the relay-BS link. We also consider both perfect and outdated channel state information (CSI) between the MUs and the relay. We first derive tight closed-form lower bounds on the outage probability. We then derive compact expressions for the asymptotic outage probability to explicitly characterize the network performance in the high signal-to-noise ratio regime. Based on our asymptotic results, we demonstrate that the diversity order is determined by both Nakagami-m fading parameters, M, and N when perfect CSI is available. When outdated CSI is available, the diversity order is determined by Nakagami-m fading parameters only. In addition, we quantify the contributions of M, N, and the outdated CSI to the outage probability via the array gain.

  • An Improved Single Image Haze Removal Algorithm Using Image Segmentation

    Hanhoon PARK  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E97-D No:9
      Page(s):
    2554-2558

    In this letter, we propose an improved single image haze removal algorithm using image segmentation. It can effectively resolve two common problems of conventional algorithms which are based on dark channel prior: halo artifact and wrong estimation of atmospheric light. The process flow of our algorithm is as follows. First, the input hazy image is over-segmented. Then, the segmentation results are used for improving the conventional dark channel computation which uses fixed local patches. Also, the segmentation results are used for accurately estimating the atmospheric light. Finally, from the improved dark channel and atmospheric light, an accurate transmission map is computed allowing us to recover a high quality haze-free image.

  • Low Complexity Channel Assignment for IEEE 802.11b/g Multi-Cell WLANs

    Mohamed ELWEKEIL  Masoud ALGHONIEMY  Osamu MUTA  Hiroshi FURUKAWA  

     
    PAPER-Communication Theory and Signals

      Vol:
    E97-A No:8
      Page(s):
    1761-1769

    Wireless Local Area Networks (WLANs) are widely deployed for internet access. Multiple interfering Access Points (APs) lead to a significant increase in collisions, that reduces throughput and affects media traffic. Thus, interference mitigation among different APs becomes a crucial issue in Multi-Cell WLAN systems. One solution to this issue is to assign a different frequency channel to each AP so as to prevent neighboring cells from operating on the same channel. However, most of the existing WLANs today operate in the unlicensed 2.4GHz Industrial, Scientific and Medical (ISM) band, which suffers from lack of the available channels. Therefore, effective channel assignment to minimize the interference in Multi-Cell WLANs is necessary. In this article, we formulate the channel assignment problem as a mixed integer linear programming (MILP) problem that minimizes the worst case total interference power. The main advantage of this algorithm is that it provides a global solution and at the same time guarantees a non-overlapping channel assignment. We also propose a Lagrangian relaxation approach to transform the MILP into a low complexity linear program which can be solved efficiently in real time, even for large sized networks. Simulation results reveal that both the MILP algorithm and the Lagrangian relaxation approach provide a total interference reduction below the default setting of having all APs assigned the same channel. In addition, simulation results on cumulative density function (CDF) of the SINR at the user level prove the validity of the proposed algorithms.

  • Limited Feedback for Cooperative Multicell MIMO Systems with Multiple Receive Antennas

    Yating WU  Tao WANG  Yanzan SUN  Yidong CUI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:8
      Page(s):
    1701-1708

    Multicell cooperation is a promising technique to mitigate the inter-cell interference and improve the sum rate in cellular systems. Limited feedback design is of great importance to base station cooperation as it provides the quantized channel state information (CSI) of both the desired and interfering channels to the transmitters. Most studies on multicell limited feedback deal with scenarios of a single receive antenna at the mobile user. This paper, however, applies limited feedback to cooperative multicell multiple-input multiple-output (MIMO) systems where both base stations and users are equipped with multiple antennas. An optimized feedback strategy with random vector quantization (RVQ) codebook is proposed for interference aware coordinated beamforming that approximately maximizes the lower bound of the sum rate. By minimizing the upper-bound on the mean sum-rate loss induced by the quantization errors, we present a feedback-bit allocation algorithm to divide the available feedback bits between the desired and interfering channels for arbitrary number of transmit and receive antennas under different interfering signal strengths. Simulation results demonstrate that the proposed scheme utilizes the feedback resource effectively and achieves sum-rate performance reasonably close to the full CSI case.

  • Token-Scheduled High Throughput Data Collection with Topology Adaptability in Wireless Sensor Network

    Jinzhi LIU  Makoto SUZUKI  Doohwan LEE  Hiroyuki MORIKAWA  

     
    PAPER-Network

      Vol:
    E97-B No:8
      Page(s):
    1656-1666

    This paper presents a data gathering protocol for wireless sensor network applications that require high throughput and topology adaptability under the premises of uniform traffic and energy-rich environments. Insofar as high throughput is concerned, TDMA is more suitable than CSMA. However, traditional TDMA protocols require complex scheduling of transmission time slots. The scheduling burden is the primary barrier to topology adaptability. Under the premises of uniform traffic and energy-rich environments, this paper proposes a token-scheduled multi-channel TDMA protocol named TKN-TWN to ease the scheduling burden while exploiting the advantages of TDMA. TKN-TWN uses multiple tokens to arbitrate data transmission. Due to the simplified scheduling based on tokens, TKN-TWN is able to provide adaptability for topology changes. The contention-free TDMA and multi-channel communication afford TKN-TWN the leverage to sustain high throughput based on pipelined packet forwarding. TKN-TWN further associates the ownership of tokens with transmission slot assignment toward throughput optimization. We implement TKN-TWN on Tmote Sky with TinyOS 2.1.1 operating system. Experimental results in a deployed network consisting of 32 sensor nodes show that TKN-TWN is robust to network changes caused by occasional node failures. Evaluation also shows that TKN-TWN is able to provide throughput of 9.7KByte/s.

  • Broadband Access in Complex Environments: LTE on Railway Open Access

    César BRISO-RODRÍGUEZ  Carlos F. LÓPEZ  Jean R.O. FERNÁNDEZ  Sergio PÉREZ  Drasko DRASKOVIC  Jaime CALLE-SÁNCHEZ  Mariano MOLINA-GARCIA  José I. ALONSO  Carlos RODRÍGUEZ  Carlos HERNÁNDEZ  Juan MORENO  José RODRÍGUEZ-PIÑEIRO  José A. GARCÍA-NAYA  Luis CASTEDO  Alfonso FERNANDEZ-DURÁN  

     
    INVITED PAPER

      Vol:
    E97-B No:8
      Page(s):
    1514-1527

    This paper assesses the main challenges associated with the propagation and channel modeling of broadband radio systems in a complex environment of high speed and metropolitan railways. These challenges comprise practical simulation, modeling interferences, radio planning, test trials and performance evaluation in different railway scenarios using Long Term Evolution (LTE) as test case. This approach requires several steps; the first is the use of a radio propagation simulator based on ray-tracing techniques to accurately predict propagation. Besides the radio propagation simulator, a complete test bed has been constructed to assess LTE performance, channel propagation conditions and interference with other systems in real-world environments by means of standard-compliant LTE transmissions. Such measurement results allowed us to evaluate the propagation and performance of broadband signals and to test the suitability of LTE radio technology for complex railway scenarios.

  • Power Line Communications: Understanding the Channel for Physical Layer Evolution Based on Filter Bank Modulation Open Access

    Andrea M. TONELLO  Alberto PITTOLO  Mauro GIROTTO  

     
    INVITED PAPER

      Vol:
    E97-B No:8
      Page(s):
    1494-1503

    This paper provides an overview of power line communication (PLC) applications, challenges and possible evolution. Emphasis is put on two relevant aspects: a) channel characterization and modeling, b) filter bank modulation for spectral efficient transmission. The main characteristics of both the indoor channel (in-home, in-ship, in-car) and the outdoor low voltage and medium voltage channels are reported and compared. A simple approach to statistically model the channel frequency response (CFR) is described and it is based on the generation of a vector of correlated random variables. To overcome the channel distortions, it is shown that filter bank modulation can provide robust performance. In particular, it is shown that the sub-channel spectral containment of filtered multitone modulation (FMT) can provide high notching capability and spectral efficiency. Reduced complexity can be obtained with a cyclic filter bank modulation approach that we refer to as cyclic block FMT modulation (CB-FMT) which still provides higher spectral flexibility/efficiency than OFDM.

  • DYN-MAC: A MAC Protocol for Cognitive Radio Networks with Dynamic Control Channel Assignment

    Zaw HTIKE  Choong Seon HONG  Sungwon LEE  Ilkwon CHO  

     
    PAPER

      Vol:
    E97-B No:8
      Page(s):
    1577-1585

    Cognitive radio is one of the most promising wireless technologies and has been recognized as a new way to improve the spectral efficiency of wireless networks. In a cognitive radio network, secondary users exchange control information for network coordination such as transmitter-receiver handshakes, for sharing spectrum sensing results, for neighbor discovery, to maintain connectivity, and so on. Spectrum utilization and resource optimizations thus rely on information exchange among secondary users. Normally, secondary users exchange the control information via a predefined channel, called a common control channel (CCC). Most of the medium access control (MAC) protocols for cognitive radio networks were designed by assuming the existence of a CCC, and further assuming that it was available for every secondary user. However, the main drawback of using a static CCC is it is susceptible to primary user activities since the channel can be occupied by primary users at any time. In this paper, we propose a MAC protocol for cognitive radio networks with dynamic control channel assignment, called DYN-MAC. In DYN-MAC, a control channel is dynamically assigned based on spectrum availability. Thus, it can tolerate primary user activities. DYN-MAC also supports collision free network-wide broadcasting and addresses other major problems such as primary/secondary user hidden terminal problems.

  • Model-Based Compressive Channel Estimation over Rapidly Time-Varying Channels in OFDM Systems

    Yi LIU  Wenbo MEI  Huiqian DU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:8
      Page(s):
    1709-1716

    By exploiting the inherent sparsity of wireless propagation channels, the theory of compressive sensing (CS) provides us with novel technologies to estimate the channel state information (CSI) that require considerably fewer samples than traditional pilot-aided estimation methods. In this paper, we describe the block-sparse structure of the fast time-varying channel and apply the model-based CS (MCS) for channel estimation in orthogonal frequency division multiplexing (OFDM) systems. By exploiting the structured sparsity, the proposed MCS-based method can further compress the channel information, thereby allowing a more efficient and precise estimation of the CSI compared with conventional CS-based approaches. Furthermore, a specific pilot arrangement is tailored for the proposed estimation scheme. This so-called random grouped pilot pattern can not only effectively protect the measurements from the inter-carrier interference (ICI) caused by Doppler spreading but can also enable the measurement matrix to meet the conditions required for MCS with relatively high probability. Simulation results demonstrate that our method has good performance at high Doppler frequencies.

  • Bilayer Lengthened QC-LDPC Codes Design for Relay Channel

    Hua XU  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E97-B No:7
      Page(s):
    1365-1374

    The relay channel is the common approach to cooperative communication. Quasi-cyclic low-density parity-check (QC-LDPC) code design for the relay channel is important to cooperative communication. This paper proposes a bilayer QC-LDPC code design scheme for the relay channel. Combined with the bilayer graphical code structure, an improved Chinese remainder theorem (CRT) method, the Biff-CRT method is presented. For the proposed method we introduce a finite field approach. The good performance of the finite field based QC-LDPC code can improve the performance of its corresponding objective QC-LDPC code in the proposed scheme. We construct the FF code and the FA code by the Biff-CRT method. The FF code and the FA code are both named as their two component codes. For the FF code, the two component code are both finite field based QC-LDPC codes. For the FA code, one of the component codes is the finite field based QC-LDPC code and the other is the array code. For the existing CRT method, the shortened array code and the array code are usually used as the component codes to construct the SA code. The exponent matrices of FF code, FA code and SA code are given both for the overall graph and the lower graph. Bit error rate (BER) simulation results indicate that the proposed FF code and FA code are superior to the SA code both at the relay node and the destination node. In addition, the theoretical limit and the BER of the bilayer irregular LDPC code are also given to compare with the BER of the proposed QC-LDPC codes. Moreover, the proposed Biff-CRT method is flexible, easy to implement and effective for constructing the QC-LDPC codes for the relay channel, and it is attractive for being used in the future cooperative communication systems.

  • Scan-Based Attack against Trivium Stream Cipher Using Scan Signatures

    Mika FUJISHIRO  Masao YANAGISAWA  Nozomu TOGAWA  

     
    PAPER

      Vol:
    E97-A No:7
      Page(s):
    1444-1451

    Trivium is a synchronous stream cipher using three shift registers. It is designed to have a simple structure and runs at high speed. A scan-based side-channel attack retrieves secret information using scan chains, one of design-for-test techniques. In this paper, a scan-based side-channel attack method against Trivium using scan signatures is proposed. In our method, we reconstruct a previous internal state in Trivium one by one from the internal state just when a ciphertext is generated. When we retrieve the internal state, we focus on a particular 1-bit position in a collection of scan chains and then we can attack Trivium even if the scan chain includes other registers than internal state registers in Trivium. Experimental results show that our proposed method successfully retrieves a plaintext from a ciphertext generated by Trivium.

  • Analysis of Side-Channel Attack Based on Information Theory

    Hiroaki MIZUNO  Keisuke IWAI  Hidema TANAKA  Takakazu KUROKAWA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E97-A No:7
      Page(s):
    1523-1532

    This paper presents a new information-theoretical evaluation method, for the resistance of cryptographic implementation against side-channel attacks. In conventional methods, the results of actual attacks have been often used empirically. However, these experimental methods have some problems. In the proposed method, a side-channel attack is regarded as a communication channel model. Then, a new evaluation index “the amount of leakage information” can be defined. The upper-bound of this index is estimated as the channel capacity. The proposed evaluation using this index can avoid the problems of conventional methods. Consequently, the proposed method provides some benefits: (1) It provides rationale for evaluation; (2) It enables execution of numerical evaluation and mutual evaluation among several kinds of countermeasures. This research achieves a unification of evaluation indexes for resistance against side-channel attack. This paper applies the proposed method to correlation power analysis against implementations of stream cipher Enocoro-128 v2. As a result, we confirmed its effectiveness.

  • An Interference-Robust Channel Estimation Method for Transparent MU-MIMO Transmission in LTE-Advanced System

    Won-Jun HWANG  Jun-Hee JANG  Seong-Woo AHN  Hyung-Jin CHOI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:7
      Page(s):
    1412-1421

    In LTE (Long Term Evolution)-Advanced system, a transparent MU-MIMO (Multi-User Multiple-Input Multiple Output) scheduling is basically considered, so the performance degradation in channel estimation may occur due to the unpredictable interference from co-scheduled layers. In order to detect and mitigate the interference, traditional binary hypothesis testing based interference detection method and iterative channel estimation method can be applied. However, there are two major problems. First, the binary hypothesis testing based interference detection is not suitable solution for LTE-Advanced system which has four dynamically changing interference hypotheses. Second, the conventional iterative operation does not guarantee sufficient performance gain with limited iteration time due to the estimation error in initial estimation stage. To overcome these problems, we introduce an enhanced iterative channel estimation method which considers simple matrix operation-based partial interference estimation. Based on the outcomes of the partial interference estimation, we can not only detect interference layers individually, but also partially eliminate the interference in initial channel estimation stage. Consequently, the proposed method can effectively mitigate the interference adaptively to the dynamically changing interference condition.

  • Unified Analysis of ICI-Cancelled OFDM Systems in Doubly-Selective Channels

    Chi KUO  Jin-Fu CHANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:7
      Page(s):
    1435-1448

    The effect of transceiver impairments (consisting of frequency offset, phase noise and doubly-selective channel) is a key factor for determining performance of an orthogonal frequency-division multiplexing (OFDM) system since the transceiver impairments trigger intercarrier interference (ICI). These impairments are well known and have been investigated separately in the past. However, these impairments usually arise concurrently and should be jointly considered from the perspectives of both receiver design and system evaluation. In this research, impact of these impairments on an OFDM system is jointly analyzed and the result degenerates to the special case where only a specific impairment is present. A mitigation method aided by segment-by-segment time-domain interpolation (STI) is then proposed following the analysis. STI is general, and its weights can be specified according to the interpolation method and system requirements. Computer simulation is used to validate the analysis and to compare the performance of the proposed method with those of other proposals.

  • Performance Evaluation of CDMA Using Chaotic Spreading Sequence with Constant Power in Indoor Power Line Fading Channels

    Ryo TAKAHASHI  Ken UMENO  

     
    LETTER-Nonlinear Problems

      Vol:
    E97-A No:7
      Page(s):
    1619-1622

    In this study, a performance of a synchronous code division multiple access (CDMA) using the chaotic spreading sequences with constant power is estimated in indoor power line fading channels. It is found that, in the fading channels, as the number of simultaneous users increases, the chaotic spreading sequences realize better performance than the Walsh-Hadamard sequences in the synchronous CDMA.

  • Sparse Binary-to-Ternary Encoding for Holographic Storage

    Seth PHILLIPS  Ivan FAIR  

     
    PAPER

      Vol:
    E97-A No:6
      Page(s):
    1231-1239

    In holographic data storage, information is recorded within the volume of a holographic medium. Typically, the data is presented as an array of pixels with modulation in amplitude and/or phase. In the 4-f orientation, the Fourier domain representation of the data array is produced optically, and this image is recorded. If the Fourier image contains large peaks, the recording material can saturate, which leads to errors in the read-out data array. In this paper, we present a coding process that produces sparse ternary data arrays. Ternary modulation is used because it inherently provides Fourier domain smoothing and allows more data to be stored per array in comparison to binary modulation. Sparse arrays contain fewer on-pixels than dense arrays, and thus contain less power overall, which reduces the severity of peaks in the Fourier domain. The coding process first converts binary data to a sequence of ternary symbols via a high-rate block code, and then uses guided scrambling to produce a set of candidate codewords, from which the most sparse is selected to complete the encoding process. Our analysis of the guided scrambling division and selection processes demonstrates that, with primitive scrambling polynomials, a sparsity greater than 1/3 is guaranteed for all encoded arrays, and that the probability of this worst-case sparsity decreases with increasing block size.

  • Recovering RSA Secret Keys from Noisy Key Bits with Erasures and Errors

    Noboru KUNIHIRO  Naoyuki SHINOHARA  Tetsuya IZU  

     
    PAPER

      Vol:
    E97-A No:6
      Page(s):
    1273-1284

    We discuss how to recover RSA secret keys from noisy key bits with erasures and errors. There are two known algorithms recovering original secret keys from noisy keys. At Crypto 2009, Heninger and Shacham proposed a method for the case where an erroneous version of secret keys contains only erasures. Subsequently, Henecka et al. proposed a method for an erroneous version containing only errors at Crypto 2010. For physical attacks such as side-channel and cold boot attacks, we need to study key recovery from a noisy secret key containing both erasures and errors. In this paper, we propose a method to recover a secret key from such an erroneous version and analyze the condition for error and erasure rates so that our algorithm succeeds in finding the correct secret key in polynomial time. We also evaluate a theoretical bound to recover the secret key and discuss to what extent our algorithm achieves this bound.

  • A High Output Resistance 1.2-V VDD Current Mirror with Deep Submicron Vertical MOSFETs

    Satoru TANOI  Tetsuo ENDOH  

     
    PAPER

      Vol:
    E97-C No:5
      Page(s):
    423-430

    A low VDD current mirror with deep sub-micron vertical MOSFETs is presented. The keys are new bias circuits to reduce both the minimum VDD for the operation and the sensitivity of the output current on VDD. In the simulation, our circuits reduce the minimum VDD by about 17% and the VDD sensitivity by one order both from those of the conventional. In the simulation with 90nm φ vertical MOSFET approximate models, our circuit shows about 4MΩ output resistance at 1.2-V VDD with the small temperature dependence, which is about six times as large as that with planar MOSFETs.

  • A New Simple Packet Combining Scheme Employing Maximum Likelihood Detection for MIMO-OFDM Transmission in Relay Channels

    Takeshi ONIZAWA  Hiroki SHIBAYAMA  Masashi IWABUCHI  Akira KISHIDA  Makoto UMEUCHI  Tetsu SAKATA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E97-B No:5
      Page(s):
    1094-1102

    This paper describes a simple packet combining scheme with maximum likelihood detection (MLD) for multiple-input multiple-output with orthogonal frequency division multiplexing (MIMO-OFDM) in relay channels to construct reliable wireless links in wireless local area networks (LANs). Our MLD-based approach employs the multiplexed sub-stream signals in different transmit slots. The proposed scheme uses an additional combining process before MLD processing. Moreover, the proposed scheme sets the cyclic shift delay (CSD) operation in the relay terminal. We evaluate the performance of the proposed scheme by the packet error rate (PER) and throughput performance in the decode-and-forward (DF) strategy. First, we show that the proposed scheme offers approximately 4.5dB improvement over the conventional scheme in the received power ratio of the relay terminal to the destination terminal at PER =0.1. Second, the proposed scheme achieves about 1.6 times the throughput of the conventional scheme when the received power ratio of the relay terminal to the destination terminal is 3dB.

  • On Finite-SNR DMT of Non-coherent SIMO-MRC

    Nandita LAVANIS  Devendra JALIHAL  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:5
      Page(s):
    1080-1086

    In this paper, the diversity multiplexing tradeoff (DMT) analysis of the non-coherent block-fading multiple antenna channel which uses a training-based channel estimation scheme at asymptotically high signal-to-noise ratios (SNRs) is extended to finite SNRs. This extension is performed for a single input multiple output (SIMO) maximal ratio combining (MRC) scheme. This analysis at finite SNRs is more useful because in practice, the training schemes operate at finite SNRs and their impact on DMT is more relevant at such SNRs. We show the non-applicability of the asymptotically high SNR relation, given by Zheng, to finite SNRs. We also show the equivalence of two existing training-based channel estimation schemes for any SIMO system, and using one of these, we compute the achievable finite-SNR DMT of the non-coherent SIMO-MRC scheme for two modes of the training scheme. We analyze the achievable finite-SNR DMT for different durations of training, modes of the training scheme, and SNRs. We show that the impact of the mode of the training scheme on finite-SNR DMT decreases as SNR increases. We also show that at asymptotically high SNRs, the achievable DMT in both modes of the SIMO-MRC scheme is equal to that of the non-coherent SIMO channel, as derived by Zheng.

361-380hit(1697hit)