The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] channel(1697hit)

321-340hit(1697hit)

  • Multiple Access Interference-Free Multichannel Slotted Aloha Scheme for Time-Asynchronous OFDMA Systems

    Junwoo JUNG  Jaesung LIM  Haengik KANG  Hyungwon PARK  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:4
      Page(s):
    686-700

    Signals transmitted by multiple stations through different multiple subchannels may arrive at a particular station, such as an access point (AP), with different time delays. If the difference in arrival time delays exceeds the cyclic prefix duration, the orthogonality among the subchannels can be broken, which leads to multiple access interference (MAI) among the stations. In this paper, we propose a multichannel slotted Aloha scheme based on an MAI-free group for a simple orthogonal frequency division multiple access (OFDMA) wireless network. Each MAI-free group consists of stations whose signals arrive at the AP within the cyclic prefix duration. The proposed scheme outperforms a conventional scheme using a fast retrial algorithm in terms of throughput due to smaller cyclic prefix duration, lower collision probability, and lower block probability. While the proposed scheme has higher delay overhead in a low arrival rate region, its delay approaches that of the conventional scheme as the arrival rate increases.

  • Weighted-Combining Calibration on Multiuser MIMO Systems with Implicit Feedback Open Access

    Hayato FUKUZONO  Tomoki MURAKAMI  Riichi KUDO  Yasushi TAKATORI  Masato MIZOGUCHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:4
      Page(s):
    701-713

    Implicit feedback is an approach that utilizes uplink channel state information (CSI) for downlink transmit beamforming on multiple-input multiple-output (MIMO) systems, relying on over-the-air channel reciprocity. The implicit feedback improves throughput efficiency because overhead of CSI feedback for change of over-the-air channel responses is omitted. However, it is necessary for the implicit feedback to calibrate circuitry responses that uplink CSI includes, because actual downlink and uplink channel responses do not match due to different transmit and receive circuitry chains. This paper presents our proposed calibration scheme, weighted-combining calibration (WCC); it offers improved calibration accuracy. In WCC, an access point (AP) calculates multiple calibration coefficients from ratios of downlink and uplink CSI, and then combines coefficients with minimum mean square error (MMSE) weights. The weights are derived using a linear approximation in the high signal to noise power ratio (SNR) regime. Analytical mean square error (MSE) of calibration coefficients with WCC and calibration schemes for comparison is expressed based on the linear approximation. Computer simulations show that the analytical MSE matches simulated one if the linear approximation holds, and that WCC improves the MSE and signal to interference plus noise power ratio (SINR). Indoor experiments are performed on a multiuser MIMO system with implicit feedback based on orthogonal frequency division multiplexing (OFDM), built using measurement hardware. Experimental results verify that the channel reciprocity can be exploited on the developed multiuser MIMO-OFDM system and that WCC is also effective in indoor environments.

  • Low Overhead Query Method for the Interface between Geo-Location Database and Secondary User

    Ha-Nguyen TRAN  Hiroshi HARADA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:4
      Page(s):
    714-722

    Accessing a geo-location database is one of the approaches for a secondary user (SU) to obtain the list of available channels for its operation. Channel availability is calculated based on information stored in the geo-location database and information submitted by the SU so that primary users (PU) are protected from harmful interference. The available channel checking process is modeled as a number of intersection tests between the protected contours of PUs and the operation area of the SU regarding to all potential channels. Existing studies indicated that these intersection tests consume time and introduce overhead to the database, especially when the contours or the operation areas are represented by n-polygons and the number of vertices n is a large number. This paper presents a novel method of determining available channels which reduces the number of intersection tests. By submitting SU's preferred channels or the number of channels to be checked to the database, the calculation time and database's load will be reduced significantly. This paper also presents analysis and simulation results of the database workload and the average number of channels obtained per query on different query methods. Suitable query method can be selected based on the number of similar channels in neighbor areas and the maximum number of intersection tests.

  • Predictive Control for Performance Improvement of a Feedback Control System Using Cyclostationary Channels

    Cesar CARRIZO  Kentaro KOBAYASHI  Hiraku OKADA  Masaaki KATAYAMA  

     
    PAPER-Communication Theory and Signals

      Vol:
    E98-A No:4
      Page(s):
    1000-1005

    This manuscript presents a simple scheme to improve the performance of a feedback control system that uses power line channels for its feedback loop. The noise and attenuation of power lines, and thus the signal to noise ratio, are known to be cyclostationary. Such cyclic features in the channel allow us to predict virtually error free transmission instants as well as instants of high probability of errors. This paper introduces and evaluates the effectiveness of a packet transmission scheduling that collaborates with a predictive control scheme adapted to this cyclostationary environment. In other words, we explore the cooperation between the physical and application layers of the system in order to achieve an overall optimization. To rate the control quality of the system we evaluate its stability as well as its ability to follow control commands accurately. We compare a scheme of increased packet rate against our proposed scheme which emulates a high packet rate with the use of predictive control. Through this comparison, we verify the effectiveness of the proposed scheme to improve the control quality of the system, even under low signal to noise ratio conditions in the cyclostationary channel.

  • Cooperative Relaying Channel and Outage Performance in Narrowband Wireless Body Area Network

    Karma WANGCHUK  Minseok KIM  Jun-ichi TAKADA  

     
    PAPER

      Vol:
    E98-B No:4
      Page(s):
    554-564

    To improve the outage performance of a wireless body area network (BAN), exploitation of the diversity in the channel obtained by letting different nodes cooperate and relay signals for each other is an attractive solution. We carry out multi-link channel measurements and modeling for all realistic locations of the on-body sensor nodes and for three different motion scenarios in a typical office environment to develop equivalent channel model for simple and practical cooperative transmission schemes. Using the developed model the performance of the transmission schemes are evaluated and compared. Incremental decode and forward relaying is found to be consistently better than the other schemes with gains of up to 16dB at 10% outage probability, and an average gain of more than 5.9dB for any location of the coordinator node. The best location of the coordinator node based on the performance is also determined. Such insights will be very useful in designing BANs.

  • Rice Channel Realization for BAN Over-The-Air Testing Using a Fading Emulator with an Arm-Swinging Dynamic Phantom

    Kun LI  Kazuhiro HONDA  Koichi OGAWA  

     
    PAPER

      Vol:
    E98-B No:4
      Page(s):
    543-553

    This paper presents a new methodology for realizing a Rice channel in BAN Over-The-Air (OTA) testing using a fading emulator with a dynamic phantom. For the proposed apparatus to be effective, the fading emulator must be provided with an appropriate K-factor that represents the actual propagation environment indoors. Further, an implementation of the Rice channel to the proposed fading emulator in a BAN situation is presented. Thereafter, a calibration method for the fading emulator to adjust the actual K-factor of the on-body Rice channel is advanced. This calibration method is validated by analyzing the variations in the instantaneous K-factor attributed to the arm-swinging motion. Finally, an experiment is conducted for a continuous human walking motion with the fading emulator using an arm-swinging dynamic phantom. The results show that the developed fading emulator allows BAN-OTA testing to replicate the actual Rice channel propagation environment with the consideration of the dynamic characteristics of human walking motion.

  • Spatial Channel Mapping Matrix Design in Single-Relay System

    ChaoYi ZHANG  YanDong ZHAO  DongYang WANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:3
      Page(s):
    477-484

    Multi-antenna relay transport protocols are analysed, the transmitting matrix of relay node can split into a forward and a backward filters, and these two filters are cascade connection. Based on the zero-forcing relaying protocol, a spatial channel mapping matrix is added between these two filters, and a unified framework of spatial channel mapping matrix is proposed. Then, various linear system designs are summarized, the spatial channel mapping matrix is used to reduce destination noise, so that the relaying noise is suppressed in destination node, and the transmitting power of relay is efficiently utilized. Meanwhile, source node preprocessing operation and destination node equalizer are considered. Simulation results show that the spatial channel mapping matrix has an advantage in terms of system outage probability and capacity performance, and the result is consistent with theoretical analysis.

  • Simulation Study of Short-Channel Effect in MOSFET with Two-Dimensional Materials Channel

    Naoki HARADA  Shintaro SATO  Naoki YOKOYAMA  

     
    BRIEF PAPER-Semiconductor Materials and Devices

      Vol:
    E98-C No:3
      Page(s):
    283-286

    The short-channel effect (SCE) in a MOSFET with an atomically thin MoS$_{2}$ channel was studied using a TCAD simulator. We derived the surface potential roll-up, drain-induced barrier lowering (DIBL), threshold voltage, and subthreshold swing (SS) as indexes of the SCE and analyzed their dependency on the channel thickness (number of atomic layers) and channel length. The minimum scalable channel length for a one-atomic-layer-thick MoS$_{2}$ MOSFET was determined from the threshold voltage roll-off to be 7.6,nm. The one-layer-thick device showed a small DIBL of 87,mV/V at a 20 nm gate length. By using high-k gate insulator, an SS lower than 70,mV/dec is achievable in sub-10-nm-scale devices.

  • Power Allocation for Two-Way OFDM-Based Spectrum Sharing Cognitive Radio Networks

    Ding XU  Qun LI  

     
    LETTER-Communication Theory and Signals

      Vol:
    E98-A No:3
      Page(s):
    918-922

    This paper studies the problem of power allocation for a two-way orthogonal frequency division multiplexing (OFDM) based cognitive radio (CR) network to maximize the ergodic capacities of the secondary users (SUs). Under the assumption that the SUs know the channel state information (CSI) of the interference links between the SUs and the primary user (PU) perfectly, the optimal power allocation algorithm under the interference and transmit power constraints is derived. In addition, we further assume that the SUs only know the channel distribution information (CDI) of the interference links and propose a heuristic algorithm under the interference outage and transmit power constraints based on Gaussian approximation. It is shown that the ergodic capacity with CDI is not degraded compared to that with perfect CSI under tight transmit power constraint. Moreover, it is shown that the interference outage constraint is satisfied even for very small number of subcarriers if an interference power margin is adopted for Gaussian approximation.

  • An OFDM Channel Estimation Method Based on a State-Space Model that Appropriately Considers Frequency Correlation

    Junichiro HAGIWARA  

     
    PAPER

      Vol:
    E98-A No:2
      Page(s):
    537-548

    This paper proposes a novel scheme for sequential orthogonal frequency division multiplexing channel estimation on the receiver side.The scheme comprises two methods: one improves estimation accuracy and the other reduces computational complexity. Based on a state-space model, the first method appropriately considers frequency correlation in an approach that derives a narrow-band channel gain for multiple pilot subcarriers; such consideration of frequency correlation leads to an averaging effect in the frequency domain. The second method is based on the first one and forces the observation matrix into a sparse bidiagonal matrix in order to decrease the number of mathematical processes. The proposed scheme is verified by numerical analysis.

  • Iterative Channel Estimation and Decoding via Spatial Coupling

    Shuhei HORIO  Keigo TAKEUCHI  Tsutomu KAWABATA  

     
    PAPER

      Vol:
    E98-A No:2
      Page(s):
    549-557

    For low-density parity-check codes, spatial coupling was proved to boost the performance of iterative decoding up to the optimal performance. As an application of spatial coupling, in this paper, bit-interleaved coded modulation (BICM) with spatially coupled (SC) interleaving — called SC-BICM — is considered to improve the performance of iterative channel estimation and decoding for block-fading channels. In the iterative receiver, feedback from the soft-in soft-out decoder is utilized to refine the initial channel estimates in linear minimum mean-squared error (LMMSE) channel estimation. Density evolution in the infinite-code-length limit implies that the SC-BICM allows the receiver to attain accurate channel estimates even when the pilot overhead for training is negligibly small. Furthermore, numerical simulations show that the SC-BICM can provide a steeper reduction in bit error rate than conventional BICM, as well as a significant improvement in the so-called waterfall performance for high rate systems.

  • Optimization of Learning Time for Learning-Assisted Rendezvous Channel in Cognitive Radio System

    Osamu TAKYU  Takayuki YAMAKITA  Takeo FUJII  Mai OHTA  Fumihito SASAMORI  Shiro HANDA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E98-B No:2
      Page(s):
    360-369

    This paper derives the optimal learning time for the learning-assisted rendezvous channel. One problem with the dynamic spectrum access system of cognitive radio is access channel mismatch between two wireless terminals. In the learning-assisted rendezvous channel, before exchanging packets for link connection, the rate of channel occupancy by the other system is estimated within the learning time; it is referred to as the channel occupancy rate (COR). High speed packet exchange is made possible by selecting a low COR channel. However, the optimal learning time and the impact of COR estimation errors have not been clarified yet. This paper analyzes the time to rendezvous channel (TTR), where TTR is the time needed to complete the rendezvous with a certain probability. The results indicate that the learning time and TTR have a concave relationship which means that the optimal learning time can be determined.

  • Resource Allocation for MDC Multicast in CRNs with Imperfect Spectrum Sensing and Channel Feedback

    Shengyu LI  Wenjun XU  Zhihui LIU  Kai NIU  Jiaru LIN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:2
      Page(s):
    335-343

    In this paper, resource-efficient multiple description coding (MDC) multicast is investigated in cognitive radio networks with the consideration of imperfect spectrum sensing and imperfect channel feedback. Our objective is to maximize the system goodput, which is defined as the total successfully received data rate of all multicast users, while guaranteeing the maximum transmit power budget and the maximum average received interference constraint. Owing to the uncertainty of the spectrum state and the non-closed-form expression of the objective function, it is difficult to solve the problem directly. To circumvent this problem, a pretreatment is performed, in which we first estimate the real spectrum state of primary users and then propose a Gaussian approximation for the probability density functions of transmission channel gains to simplify the computation of the objective function. Thereafter, a two-stage resource allocation algorithm is presented to accomplish the subcarrier assignment, the optimal transmit channel gain to interference plus noise ratio (T-CINR) setting, and the transmit power allocation separately. Simulation results show that the proposed scheme is able to offset more than 80% of the performance loss caused by imperfect channel feedback when the feedback error is not high, while keeping the average interference on primary users below the prescribed threshold.

  • Improved Iterative Receiver for Co-channel Interference Suppression in MIMO-OFDM Systems

    Zhiting YAN  Guanghui HE  Weifeng HE  Zhigang MAO  

     
    LETTER-Communication Theory and Signals

      Vol:
    E98-A No:2
      Page(s):
    776-782

    Co-channel interference (CCI) is becoming a challenging factor that causes performance degradation in modern communication systems. The receiver equipped with multiple antennas can suppress such interference by exploiting spatial correlation. However, it is difficult to estimate the spatial covariance matrix (SCM) of CCI accurately with limited number of known symbols. To address this problem, this paper first proposes an improved SCM estimation method by shrinking the variance of eigenvalues. In addition, based on breadth-first tree search schemes and improved channel updating, a low complexity iterative detector is presented with channel preprocessing, which not only considers the existence of CCI but also reduces the computational complexity in terms of visited nodes in a search tree. Furthermore, by scaling the extrinsic soft information which is fed back to the input of detector, the detection performance loss due to max-log approximation is compensated. Simulation results show that the proposed iterative receiver provides improved signal to interference ratio (SIR) gain with low complexity, which demonstrate the proposed scheme is attractive in practical implementation.

  • EM-Based Recursive Estimation of Spatiotemporal Correlation Statistics for Non-stationary MIMO Channel

    Yousuke NARUSE  Jun-ichi TAKADA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:2
      Page(s):
    324-334

    We introduce a MIMO channel estimation method that exploits the channel's spatiotemporal correlation without the aid of a priori channel statistical information. A simplified Gauss-Markov model that has fewer parameters to be estimated is presented for the Kalman filter. In order to obtain statistical parameters on the time evolution of the channel, considering that the time evolution is a latent statistical variable, the expectation-maximization (EM) algorithm is applied for accurate estimation. Numerical simulations reveal that the proposed method is able to enhance estimation capability by exploiting spatiotemporal correlations, and the method works well even if the forgetting factor is small.

  • Fabrication of Step-Edge Vertical-Channel Organic Transistors by Selective Electro-Spray Deposition

    Hiroshi YAMAUCHI  Shigekazu KUNIYOSHI  Masatoshi SAKAI  Kazuhiro KUDO  

     
    PAPER

      Vol:
    E98-C No:2
      Page(s):
    80-85

    Step-edge vertical channel organic field-effect transistors (SVC-OFETs) with a very short channel have been fabricated by a novel selective electrospray deposition (SESD) method. We propose the SESD method for the fabrication of SVC-OFETs based on a 6,13-bis(triisopropyl-silylethynyl) pentacene (TIPS-pentacene) semiconductor layer formed by SESD. In the SESD method, an electric field is applied between the nozzle and selective patterned electrodes on a substrate. We demonstrated that the solution accumulates on the selected electrode pattern by controlling the voltage applied to the electrode.

  • Evaluation Method for Access-Driven Cache Attacks Using Correlation Coefficient

    Junko TAKAHASHI  Toshinori FUKUNAGA  Kazumaro AOKI  Hitoshi FUJI  

     
    PAPER-Foundation

      Vol:
    E98-A No:1
      Page(s):
    192-202

    This paper proposes a new accurate evaluation method for examining the resistance of cryptographic implementations against access-driven cache attacks (CAs). We show that a mathematical correlation method between the sets of measured access time and the ideal data, which depend on the guessed key, can be utilized to evaluate quantitatively the correct key in access-driven CAs. We show the effectiveness of the proposed method using the access time measured in noisy environments. We also estimate the number of key candidates based on mathematical proof while considering memory allocation. Furthermore, based on the proposed method, we analyze quantitatively how the correlation values change with the number of plaintexts for a successful attack.

  • Cooperation between Channel Access Control and TCP Rate Adaptation in Multi-Hop Ad Hoc Networks

    Pham Thanh GIANG  Kenji NAKAGAWA  

     
    PAPER

      Vol:
    E98-B No:1
      Page(s):
    79-87

    In this paper, we propose a new cross-layer scheme Cooperation between channel Access control and TCP Rate Adaptation (CATRA) aiming to manage TCP flow contention in multi-hop ad hoc networks. CATRA scheme collects useful information from MAC and physical layers to estimate channel utilization of the station. Based on this information, we adjust Contention Window (CW) size to control the contention between stations. It can also achieve fair channel access for fair channel access of each station and the efficient spatial channel usage. Moreover, the fair value of bandwidth allocation for each flow is calculated and sent to the Transport layer. Then, we adjust the sending rate of TCP flow to solve the contention between flows and the throughput of each flow becomes fairer. The performance of CATRA is examined on various multi-hop network topologies by using Network Simulator (NS-2).

  • Future Channel Utilization-Aware Routing for Cognitive Radio Ad Hoc Networks

    Celimuge WU  Juan XU  Yusheng JI  Satoshi OHZAHATA  Toshihiko KATO  

     
    PAPER

      Vol:
    E98-B No:1
      Page(s):
    107-115

    Cognitive radio ad hoc networks can be used to solve the problems of limited available spectrum and inefficient spectrum usage by adaptively changing their transmission parameters. Routing protocol design has a significant impact on the network performance. However, an efficient protocol that takes account of primary user flows and the long-term channel assignment issue in route selection is still missing. In this paper, we propose AODV-cog, a cognitive routing protocol for CSMA/CA ad hoc networks based on AODV. AODV-cog chooses a route by considering the effect on the primary users, available channel bandwidth and link reliability. AODV-cog also takes account of future channel utilization which is an important but underexplored issue. AODV-cog switches channels for secondary user flows when network congestion occurs. We use theoretical analysis and computer simulations to show the advantage of AODV-cog over existing alternatives.

  • Distortion-Aware Dynamic Channel Allocation for Multimedia Users in Cognitive Radios

    Thanh-Tung NGUYEN  Insoo KOO  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E97-B No:12
      Page(s):
    2790-2799

    Cognitive radio has been developed recently as a promising solution to tackle the spectrum related issues such as spectrum scarcity and spectrum underutilization. Cognitive spectrum assignment is necessary for allocating spectrum bands to secondary users in order to avoid conflicts among secondary users and maximize the total network performance under a given set of conditions. In most spectrum assignment schemes, throughput is considered as the main criterion for spectrum selection or spectrum assignment. In this paper, we propose a distortion-aware channel allocation scheme for multiple secondary users who compete for primary channels to transmit multimedia data. In the proposed scheme, idle spectrum bands are assigned to the multimedia secondary users that attain the highest video distortion reduction. The scheme is expected to mitigate the selfish behaviors of users in competing channels. The performance effectiveness of our proposed channel allocation scheme is demonstrated through simulation by comparing with a benchmark of two reference spectrum assignment schemes.

321-340hit(1697hit)