The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] channel(1697hit)

301-320hit(1697hit)

  • Compressive Channel Estimation Using Distribution Agnostic Bayesian Method

    Yi LIU  Wenbo MEI  Huiqian DU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:8
      Page(s):
    1672-1679

    Compressive sensing (CS)-based channel estimation considerably reduces pilot symbols usage by exploiting the sparsity of the propagation channel in the delay-Doppler domain. In this paper, we consider the application of Bayesian approaches to the sparse channel estimation in orthogonal frequency division multiplexing (OFDM) systems. Taking advantage of the block-sparse structure and statistical properties of time-frequency selective channels, the proposed Bayesian method provides a more efficient and accurate estimation of the channel status information (CSI) than do conventional CS-based methods. Moreover, our estimation scheme is not limited to the Gaussian scenario but is also available for channels that have non-Gaussian priors or unknown probability density functions. This characteristic is notably useful when the prior statistics of channel coefficients cannot be precisely estimated. We also design a combo pilot pattern to improve the performance of the proposed estimation scheme. Simulation results demonstrate that our method performs well at high Doppler frequencies.

  • Robust Beamforming for Joint Transceiver Design in K-User Interference Channel over Energy Efficient 5G

    Shidang LI  Chunguo LI  Yongming HUANG  Dongming WANG  Luxi YANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E98-A No:8
      Page(s):
    1860-1864

    Considering worse-case channel uncertainties, we investigate the robust energy efficient (EE) beamforming design problem in a K-user multiple-input-single-output (MISO) interference channel. Our objective is to maximize the worse-case sum EE under individual transmit power constraints. In general, this fractional programming problem is NP-hard for the optimal solution. To obtain an insight into the problem, we first transform the original problem into its lower bound problem with max-min and fractional form by exploiting the relationship between the user rate and the minimum mean square error (MMSE) and using the min-max inequality. To make it tractable, we transform the problem of fractional form into a subtractive form by using the Dinkelbach transformation, and then propose an iterative algorithm using Lagrangian duality, which leads to the locally optimal solution. Simulation results demonstrate that our proposed robust EE beamforming scheme outperforms the conventional algorithm.

  • Performance of Outer-Loop Control for Adaptive Modulation and Coding Based on Mutual Information in OFDM MIMO SDM

    Teppei EBIHARA  Yasuhiro KUGE  Hidekazu TAOKA  Nobuhiko MIKI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E98-B No:8
      Page(s):
    1506-1517

    This paper presents the performance of outer-loop control for selecting the best modulation and coding scheme (MCS) based on mutual information (MI) for orthogonal frequency division multiplexing (OFDM) multiple-input multiple-output (MIMO) spatial division multiplexing (SDM). We propose an outer-loop control scheme that updates the measured MI per information bit value for selecting the best MCS from a mapping table that associates the block error rate (BLER) and MI per bit instead of directly updating the MCS selection threshold so that the required BLER is satisfied. The proposed outer-loop control is applicable to continuous data transmission including intermittent transmission with a short blank period. Moreover, we compare the measured BLER and throughput performance for two types of outer-loop control methods: instantaneous block error detection and moving-average BLER detection. In the paper, we use maximum likelihood detection (MLD) for MIMO SDM. Computer simulation results optimize the step size for the respective outer-loop control schemes for selecting the best MCS that achieves the higher throughput and the target BLER simultaneously. Computer simulation results also show that by using the most appropriate step size, the outer-loop control method based on the instantaneous block error detection of each physical resource block is more appropriate than that based on the moving-average BLER detection from the viewpoints of achieving the target BLER more accurately and higher throughput.

  • Using Pulse/Tone Signals as an Alternative to Boost Channel Reservation on Directional Communications

    Lucas DE M. GUIMARÃES  Jacir L. BORDIM  Koji NAKANO  

     
    PAPER

      Vol:
    E98-A No:8
      Page(s):
    1647-1656

    Directional communications have been considered as a feasible alternative to improve spatial division and throughput in mobile communication environments. In general, directional MAC protocols proposed in the literature rely on channel reservation based on control frames, such as RTS/CTS. Notwithstanding, channel reservation based on control frames increases latency and has an impact on the network throughput. The main contribution of this paper is to propose a channel reservation technique based on pulse/tone signals. The proposed scheme, termed directional pulse/tone channel reservation (DPTCR), allows for efficient channel reservation without resorting to control frames such as RTS and CTS. Theoretical and empirical results show that the proposed scheme has a low probability of failure while providing significant throughput gains. The results show that DPTCR is able to provide throughput improvement up to 158% higher as compared to traditional channel reservation employing RTS/CTS frames.

  • Electromagnetic Analysis against Public-Key Cryptographic Software on Embedded OS

    Hajime UNO  Sho ENDO  Naofumi HOMMA  Yu-ichi HAYASHI  Takafumi AOKI  

     
    PAPER

      Vol:
    E98-B No:7
      Page(s):
    1242-1249

    Electromagnetic analysis (EMA) against public-key cryptographic software on an embedded OS is presented in this paper. First, we propose a method for finding an observation point for EMA, where the EM radiation caused by cryptographic operations can be observed with low noise. The basic idea is to find specific EM radiation patterns produced by cryptographic operations given specific input pattern. During the operations, we scan the surface of the target device(s) with a micro magnetic probe. The scan is optimized in advanced using another compatible device that has the same central processing unit (CPU) and OS as the target device. We demonstrate the validity of the proposed EMAs through some EMA experiments with two types of RSA software on an embedded OS platform. The two types of RSA software have different implementations for modular multiplication algorithms: one is a typical and ready-made implementation using BigInteger class on Java standard library, and another is a custom-made implementation based on the Montgomery multiplication algorithm. We conduct experiments of chosen-message EMA using our scanning method, and show such EMAs successfully reveal the secret key of RSA software even under the noisy condition of the embedded OS platform. We also discuss some countermeasures against the above EMAs.

  • Outage Performance of MIMO Multihop Relay Network with MRT/RAS Scheme

    Xinjie WANG  Yuzhen HUANG  Yansheng LI  Zhe-Ming LU  

     
    LETTER-Information Network

      Pubricized:
    2015/04/20
      Vol:
    E98-D No:7
      Page(s):
    1381-1385

    In this Letter, we investigate the outage performance of MIMO amplify-and-forward (AF) multihop relay networks with maximum ratio transmission/receiver antenna selection (MRT/RAS) over Nakagami-m fading channels in the presence of co-channel interference (CCI) or not. In particular, the lower bounds for the outage probability of MIMO AF multihop relay networks with/without CCI are derived, which provides an efficient means to evaluate the joint effects of key system parameters, such as the number of antennas, the interfering power, and the severity of channel fading. In addition, the asymptotic behavior of the outage probability is investigated, and the results reveal that the full diversity order can be achieved regardless of CCI. In addition, simulation results are provided to show the correctness of our derived analytical results.

  • Information-Theoretic Limits for the Multi-Way Relay Channel with Direct Links

    Yuping SU  Ying LI  Guanghui SONG  

     
    LETTER-Information Theory

      Vol:
    E98-A No:6
      Page(s):
    1325-1328

    Information-theoretic limits of a multi-way relay channel with direct links (MWRC-DL), where multiple users exchange their messages through a relay terminal and direct links, are discussed in this paper. Under the assumption that a restricted encoder is employed at each user, an outer bound on the capacity region is derived first. Then, a decode-and-forward (DF) strategy is proposed and the corresponding rate region is characterized. The explicit outer bound and the achievable rate region for the Gaussian MWRC-DL are also derived. Numerical examples are provided to demonstrate the performance of the proposed DF strategy.

  • Secrecy Capacity of Wiretap Channels with Additive Colored Gaussian Noise

    Hachiro FUJITA  

     
    PAPER-Information Theory

      Vol:
    E98-A No:6
      Page(s):
    1276-1287

    Wyner has shown in his seminal paper on (discrete memoryless) wiretap channels that if the channel between the sender and an eavesdropper is a degraded version of the channel between the sender and the legitimate receiver, then the sender can reliably and securely transmit a message to the receiver, while the eavesdropper obtains absolutely no information about the message. Later, Leung-Yan-Cheong and Hellman extended Wyner's result to the case where the noise is white Gaussian. In this paper we extend the white Gaussian wiretap channel to the colored Gaussian case and show the finite block length secrecy capacity of colored Gaussian wiretap channels. We also show the asymptotic secrecy capacity of a specific colored Gaussian wiretap channel for which optimal power allocation can be found by a water-filling procedure.

  • Comparative Study of Open-Loop Transmit Diversity Schemes with Four Antennas in DFT-Precoded OFDMA Using Turbo FDE and Iterative Channel Estimation

    Lianjun DENG  Teruo KAWAMURA  Hidekazu TAOKA  Mamoru SAWAHASHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:6
      Page(s):
    1065-1077

    This paper presents comprehensive comparisons on the block error rate (BLER) performance of rate-one open-loop (OL) transmit diversity schemes with four antennas for discrete Fourier transform (DFT)-precoded Orthogonal Frequency Division Multiple Access (OFDMA). One candidate scheme employs a quasi-orthogonal (QO) - space-time block code (STBC) in which four-branch minimum mean-square error (MMSE) combining is achieved at the cost of residual inter-code interference (ICI). Another candidate employs a combination of the STBC and selection transmit diversity called time switched transmit diversity (TSTD) (or frequency switched transmit diversity (FSTD)). We apply a turbo frequency domain equalizer (FDE) associated with iterative decision-feedback channel estimation (DFCE) using soft-symbol estimation to reduce channel estimation (CE) error. The turbo FDE includes an ICI canceller to reduce the influence of the residual ICI for the QO-STBC. Based on link-level simulation results, we show that a combination of the STBC and TSTD (or FSTD) is suitable as a four-antenna OL transmit diversity scheme for DFT-precoded OFDMA using the turbo FDE and iterative DFCE.

  • Backchannel Prediction for Mandarin Human-Computer Interaction

    Xia MAO  Yiping PENG  Yuli XUE  Na LUO  Alberto ROVETTA  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2015/03/02
      Vol:
    E98-D No:6
      Page(s):
    1228-1237

    In recent years, researchers have tried to create unhindered human-computer interaction by giving virtual agents human-like conversational skills. Predicting backchannel feedback for agent listeners has become a novel research hot-spot. The main goal of this paper is to identify appropriate features and methods for backchannel prediction in Mandarin conversations. Firstly, multimodal Mandarin conversations are recorded for the analysis of backchannel behaviors. In order to eliminate individual difference in the original face-to-face conversations, more backchannels from different listeners are gathered together. These data confirm that backchannels occurring in the speakers' pauses form a vast majority in Mandarin conversations. Both prosodic and visual features are used in backchannel prediction. Four types of models based on the speakers' pauses are built by using support vector machine classifiers. An evaluation of the pause-based prediction model has shown relatively high accuracy in consideration of the optional nature of backchannel feedback. Finally, the results of the subjective evaluation validate that the conversations performed between humans and virtual listeners using backchannels predicted by the proposed models is more unhindered compared to other backchannel prediction methods.

  • Performance Analysis of Distributed Broadcasting in IEEE 802.11p MAC Protocol

    Daein JEONG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:6
      Page(s):
    1086-1094

    In this paper, we propose an analysis of broadcasting in the IEEE 802.11p MAC protocol. We consider multi-channel operation which is specifically designed for VANET (Vehicular Ad hoc Networks) applications. This protocol supports channel switching; the device alternates between the CCH (Control Channel) and the SCH (Service Channel) during the fixed synchronization interval. It helps vehicles with a single transceiver to access the CCH periodically during which time they acquire or broadcast safety-related messages. Confining the broadcasting opportunity to the deterministic CCH interval entails a non-typical approach to the analysis. Our analysis is carried out considering 1) the time dependency of the system behavior caused by the channel switching, 2) the mutual influence among the vehicles using a multi-dimensional stochastic process, and 3) the generation of messages distributed over the CCH interval. The proposed analysis enables the prediction of the successful delivery ratio and the delay of the broadcast messages. Furthermore, we propose a refinement of the analysis to take account of the effects of hidden nodes on the system performance. The simulation results show that the proposed analysis is quite accurate in describing both the delivery ratio and delay, as well as in reflecting the hidden node effects. The benefits derived from the distributed generation of traffic are also evidenced by the results of experiments.

  • A Novel Algorithm for Burst Detection in Wideband Networking Waveform of Software Defined Radio

    Muhammad ZEESHAN  Shoab KHAN  

     
    PAPER-Digital Signal Processing

      Vol:
    E98-A No:6
      Page(s):
    1225-1233

    The correct detection of the start of burst is very important in wideband networking radio operation as it directly affects the Time Division Multiple Access (TDMA) adaptive time slot algorithm. In this paper, we propose a robust Data Aided (DA) algorithm for burst detection in a hybrid CDMA/Adaptive TDMA based wideband networking waveform of a software defined radio. The proposed algorithm is based on a novel differentially modulated training sequence designed by using precoding sequence. The training sequence structure and precoding sequence are exploited in the calculation of proposed timing metric which is normalized by the signal energy. The precoding sequence is adequately designed for the timing metric to have a sharp peak. The algorithm shows excellent performance for multiuser scenario. It is shown through computer simulations that by increasing the active users from 1 to 8, the performance degradation is only about 1∼2dB. The proposed algorithm is compared with other algorithms and found to outperform them even in the presence of multipath fading effects. The proposed algorithm has been implemented on Field Programmable Gate Array (FPGA) platform for high data rate applications and it is shown that the results from hardware are identical to the simulation results.

  • Experimental Study on Ray Based Spatio-Temporal Channel Characteristics in Indoor Environment

    Koshiro KITAO  Tetsuro IMAI  Kentaro SAITO  Yukihiko OKUMURA  

     
    PAPER

      Vol:
    E98-B No:5
      Page(s):
    798-805

    This paper describes characteristics of direct and scattered waves that are extracted from measurement channel data obtained using a 3.35GHz vector channel sounder in an indoor environment. For the scattered waves, a ray number, n, is assigned to each ray in order of the received levels and the relationship between n and the characteristics of each ray such as the received level, delay and azimuth angle of arrival (AOA) are investigated. The distribution of the received level for each n, which is normalized to the received level that is calculated based on free space at each measurement point and includes the received level of all measurement points, is a log normal distribution. Moreover, the median received level of each n of the scattered waves is approximated with two different gradient linear lines as a function of n. Furthermore, the azimuth AOA for the ray of scattered waves whose received level is relatively high is biased in the base station antenna direction and the distribution of the azimuth AOA becomes uniform with a decrease in the received ray level. Finally, a spatio-temporal channel model is proposed based on the above mentioned analysis.

  • An Iterative MIMO Receiver Employing Virtual Channels with a Turbo Decoder for OFDM Wireless Systems

    Akihito TAYA  Satoshi DENNO  Koji YAMAMOTO  Masahiro MORIKURA  Daisuke UMEHARA  Hidekazu MURATA  Susumu YOSHIDA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:5
      Page(s):
    878-889

    This paper proposes a novel iterative multiple-input multiple-output (MIMO) receiver for orthogonal frequency division multiplexing (OFDM) systems, named as an “iterative MIMO receiver employing virtual channels with a Turbo decoder.” The proposed MIMO receiver comprises a MIMO detector with virtual channel detection and a Turbo decoder, between which signals are exchanged iteratively. This paper proposes a semi hard input soft output (SHISO) iterative decoding for the iterative MIMO receiver that achieves better performance than a soft input soft output (SISO) iterative decoding. Moreover, this paper proposes a new criterion for the MIMO detector to select the most likely virtual channel. The performance of the proposed receiver is verified in a 6×2 MIMO-OFDM system by computer simulation. The proposed receiver achieves better performance than the SISO MAP iterative receiver by 1.5dB at the bit error rate (BER) of 10-4, by optimizing the number of the Turbo iteration per the SHISO iteration. Moreover, the proposed detection criterion enables the proposed receiver to achieve a gain of 3.0dB at the BER of 10-5, compared with the SISO MAP iterative receiver with the Turbo decoder.

  • Performance Analysis of an LMS Based Adaptive Feedback Canceller for On-Channel Repeaters

    Jihoon CHOI  Young-Ho JUNG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:5
      Page(s):
    908-916

    An on-channel repeater (OCR) performing simultaneous reception and transmission at the same frequency is beneficial to improve spectral efficiency and coverage. In an OCR, it is important to cancel the feedback interference caused by imperfect isolation between the transmit and receive antennas, and least mean square (LMS) based adaptive filters are commonly used for this purpose. In this paper, we analyze the performance of the LMS based adaptive feedback canceller in terms of its transient behavior and the steady-state mean square error (MSE). Through a theoretical analysis, we derive iterative equations to compute transient MSEs and provide a procedure to simply evaluate steady-state MSEs for the adaptive feedback canceller. Simulation results performed to verify the theoretical MSEs show good agreement between the proposed theoretical analysis and the empirical results.

  • Measurement and Characterization of 60GHz Proximity Channels in Desktop Environments with Electronic Device Chassis

    Koji AKITA  Takayoshi ITO  Hideo KASAMI  

     
    PAPER

      Vol:
    E98-B No:5
      Page(s):
    790-797

    Measurements of 60GHz proximity channels are performed in desktop environments with a digital camera, a laptop PC, a tablet, a smartphone, and a DVD player. The results are characterized by a statistical channel model. All measured channels are found to be similar to conventional exponential decay profiles that have a relatively large first path due to line-of-sight components. We also show that the power difference between the first path and the delay paths is related to randomization of radio wave polarization by internal reflections in the devices, whereas this is conventionally dependent on only a Rice factor. To express this effect, the conventional model is modified by adding one parameter. Computer simulations confirm that RMS delay spreads of the modeled channels are a good fit to measured channels under most conditions.

  • Interplay between Power Control and Channel Allocation for Multi-Channel Wireless Networks

    Jaeseon HWANG  Hyuk LIM  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:5
      Page(s):
    897-907

    In wireless networks, interference from adjacent nodes that are concurrently transmitting can cause packet reception failures and thus a significant throughput degradation. The interference can be simply avoided by assigning different orthogonal channels to each interfering node. However, if the number of orthogonal channels is smaller than that of interfering nodes, some adjacent nodes have to share the same channel and may interfere with each other. This interference can be mitigated by reducing the transmit power of the interfering nodes. In this paper, we propose to jointly coordinate the transmit power and the multi-channel allocation to maximize the network throughput performance by fully exploiting multi-channel availability. This coordination enables each node to use high transmission power as long as different orthogonal channels can be assigned to its adjacent nodes. Then, we propose a simple multi-channel media access control (MAC) protocol that allows the nodes on different channels to perform efficient data exchanges without interference in multi-channel networks. We show that the proposed scheme improves the network throughput performance in comparison with other existing schemes.

  • Interference Suppression Method between Primary Broadcasting and Secondary Systems Using Load Modulation

    Takuma ITO  Naoki HONMA  Keisuke TERASAKI  Kentaro NISHIMORI  Yoshitaka TSUNEKAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E98-B No:5
      Page(s):
    861-869

    Controlling interference from the secondary system (SS) to the receiver of the primary system (PS) is an important issue when the SS uses the same frequency band as the television broadcast system. The reason includes that the SS is unaware of the interference imposed on the primary receiver (PS-Rx), which does not have a transmitter. In this paper, we propose an interference control method between PS-Rx and SS, where a load modulation scheme is introduced to the PS-Rx. In this method, the signal from the PS transmitting station is scattered by switching its load impedance. The SS observes the scattered channel and calculates the interference suppression weights for transmitting, and controls interference by transmit beamforming. A simulation shows that the Signal-to-Interference Ratio (SIR) with interference control is improved by up to 41.5dB compared to that without interference control at short distances; the results confirm that the proposed method is effective in controlling interference between PS-Rx and SS. Furthermore, we evaluate the Signal-to-Noise Ratio (SNR) and channel capacity at SS.

  • Interference-Aware Channel Segregation Based Dynamic Channel Assignment for Wireless Networks

    Yuki MATSUMURA  Katsuhiro TEMMA  Ren SUGAI  Tatsunori OBARA  Tetsuya YAMAMOTO  Fumiyuki ADACHI  

     
    PAPER-Network Management/Operation

      Vol:
    E98-B No:5
      Page(s):
    854-860

    Recently, we proposed an interference-aware channel segregation based dynamic channel assignment (IACS-DCA). In IACS-DCA, each base station (BS) measures the instantaneous co-channel interference (CCI) power on each available channel, computes the moving average CCI power using past CCI measurement results, and selects the channel having the lowest moving average CCI power. In this way, the CCI-minimized channel reuse pattern can be formed. In this paper, we introduce the autocorrelation function of channel reuse pattern, the fairness of channel reuse, and the minimum co-channel BS distance to quantitatively examine the channel reuse pattern formed by the IACS-DCA. It is shown that the IACS-DCA can form a CCI-minimized channel reuse pattern in a distributed manner and that it improves the signal-to-interference ratio (SIR) compared to the other channel assignment schemes.

  • Channel Models and Beamforming at Millimeter-Wave Frequency Bands Open Access

    Katsuyuki HANEDA  

     
    INVITED PAPER

      Vol:
    E98-B No:5
      Page(s):
    755-772

    Millimeter-wave (mm-wave) radio is attracting attention as one of the key enabling physical layer technologies for the fifth-generation (5G) mobile access and backhaul. This paper aims at clarifying possible roles of mm-wave radio in the 5G development and performing a comprehensive literature survey on mm-wave radio channel modeling essential for the feasibility study. Emphasis in the literature survey is laid on grasping the typical behavior of mm-wave channels, identifying missing features in the presently available channel models for the design and evaluation of the mm-wave radio links within the 5G context, and exemplifying different channel modeling activities through analyses performed in the authors' group. As a key technological element of the mm-wave radios, reduced complexity beamforming is also addressed. Design criteria of the beamforming are developed based on the spatial multipath characteristics of measured indoor mm-wave channels.

301-320hit(1697hit)