The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] channel(1697hit)

281-300hit(1697hit)

  • Propagation Channel Interpolation for Fingerprint-Based Localization of Illegal Radios

    Azril HANIZ  Gia Khanh TRAN  Ryosuke IWATA  Kei SAKAGUCHI  Jun-ichi TAKADA  Daisuke HAYASHI  Toshihiro YAMAGUCHI  Shintaro ARATA  

     
    PAPER-Sensing

      Vol:
    E98-B No:12
      Page(s):
    2508-2519

    Conventional localization techniques such as triangulation and multilateration are not reliable in non-line-of-sight (NLOS) environments such as dense urban areas. Although fingerprint-based localization techniques have been proposed to solve this problem, we may face difficulties because we do not know the parameters of the illegal radio when creating the fingerprint database. This paper proposes a novel technique to localize illegal radios in an urban environment by interpolating the channel impulse responses stored as fingerprints in a database. The proposed interpolation technique consists of interpolation in the bandwidth (delay), frequency and spatial domains. A localization algorithm that minimizes the squared error criterion is employed in this paper, and the proposed technique is evaluated through Monte Carlo simulations using location fingerprints obtained from ray-tracing simulations. Results show that utilizing an interpolated fingerprint database is advantageous in such scenarios.

  • Outage Probability of Incremental Selection AF Relaying Scheme in Half-Duplex Cooperative Relay Networks

    Jeehoon LEE  Minjoong RIM  Kiseon KIM  

     
    PAPER-Network

      Vol:
    E98-B No:12
      Page(s):
    2439-2445

    An incremental relaying protocol is a promising scheme for preventing the inefficient use of resources in half-duplex cooperative relay networks. In particular, the incremental selection amplify-and-forward (ISAF) relaying scheme is a well-designed protocol under the condition that the source-to-destination (SD) link is static during the two transmission phases. However, from a practical viewpoint, the SD link is not static but varies with time, and thus the ISAF relaying scheme may not work well in the field. In this work, we first show that the outage performance of the ISAF relaying scheme may decrease when the SD link is not static during the two transmission phases. We then propose a modified version of the ISAF relaying scheme which overcomes such a limitation of the ISAF relaying scheme under time-varying environments. Finally, numerical and simulation results are provided to support our findings.

  • Improved Estimation of Direction-of-Arrival by Adaptive Selection of Algorithms in Angular Spread Environments

    Tomomi AOKI  Yasuhiko TANABE  

     
    PAPER-Antennas and Propagation

      Vol:
    E98-B No:12
      Page(s):
    2454-2462

    This paper proposes a novel direction-of-arrival (DOA) estimation method that can reduce performance degradation due to angular spread. Some algorithms previously proposed for such estimation make assumptions about the distributions of amplitude and phase for incident waves because most DOA estimation algorithms are sensitive to angular spread. However, when the assumptions are inaccurate, these algorithms perform poorly as compared with algorithms without countermeasures against angular spread. In this paper, we propose a method for selecting an appropriate DOA estimation algorithm according to the channel vector of each source signal as estimated by independent component analysis. Computer simulations show that the proposed method can robustly estimate DOA in environments with angular spread.

  • On Two Strong Converse Theorems for Discrete Memoryless Channels

    Yasutada OOHAMA  

     
    LETTER-Shannon Theory

      Vol:
    E98-A No:12
      Page(s):
    2471-2475

    In 1973, Arimoto proved the strong converse theorem for the discrete memoryless channels stating that when transmission rate R is above channel capacity C, the error probability of decoding goes to one as the block length n of code word tends to infinity. He proved the theorem by deriving the exponent function of error probability of correct decoding that is positive if and only if R>C. Subsequently, in 1979, Dueck and Körner determined the optimal exponent of correct decoding. Arimoto's bound has been said to be equal to the bound of Dueck and Körner. However its rigorous proof has not been presented so far. In this paper we give a rigorous proof of the equivalence of Arimoto's bound to that of Dueck and Körner.

  • Scan-Based Side-Channel Attack on the Camellia Block Cipher Using Scan Signatures

    Huiqian JIANG  Mika FUJISHIRO  Hirokazu KODERA  Masao YANAGISAWA  Nozomu TOGAWA  

     
    PAPER-Logic Synthesis, Test and Verification

      Vol:
    E98-A No:12
      Page(s):
    2547-2555

    Camellia is a block cipher jointly developed by Mitsubishi and NTT of Japan. It is designed suitable for both software and hardware implementations. One of the design-for-test techniques using scan chains is called scan-path test, in which testers can observe and control the registers inside the LSI chip directly in order to check if the LSI chip correctly operates or not. Recently, a scan-based side-channel attack is reported which retrieves the secret information from the cryptosystem using scan chains. In this paper, we propose a scan-based attack method on the Camellia cipher using scan signatures. Our proposed method is based on the equivalent transformation of the Camellia algorithm and the possible key candidate reduction in order to retrieve the secret key. Experimental results show that our proposed method sucessfully retrieved its 128-bit secret key using 960 plaintexts even if the scan chain includes the Camellia cipher and other circuits and also sucessfully retrieves its secret key on the SASEBO-GII board, which is a side-channel attack standard evaluation board.

  • A Decoding Algorithm for Cyclic Codes over Symbol-Pair Read Channels

    Makoto TAKITA  Masanori HIROTOMO  Masakatu MORII  

     
    PAPER-Coding Theory

      Vol:
    E98-A No:12
      Page(s):
    2415-2422

    Cassuto and Blaum presented a new coding framework for channels whose outputs are overlapping pairs of symbols in storage applications. Such channels are called symbol-pair read channels. Pair distance and pair error are used in symbol-pair read channels. Yaakobi et al. proved a lower bound on the minimum pair distance of cyclic codes. Furthermore, they provided a decoding algorithm for correcting pair errors using a decoder for cyclic codes, and showed the number of pair errors that can be corrected by their algorithm. However, their algorithm cannot correct all pair error vectors within half of the minimum pair distance. In this paper, we propose an efficient decoding algorithm for cyclic codes over symbol-pair read channels. It is based on the relationship between pair errors and syndromes. In addition, we show that the proposed algorithm can correct more pair errors than Yaakobi's algorithm.

  • Fast MIMO Channel Calculation Technique for Multi-Antenna System Using Signal Modulation for FDTD Method

    Kazuma OUCHIDA  Naoki HONMA  Yoshitaka TSUNEKAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E98-B No:11
      Page(s):
    2300-2306

    This paper proposes a new method that combines signal modulation and FDTD (Finite-Difference Time-Domain) simulations to reduce the computation time in multiple-antenna analysis. In this method, signals are modulated so as to maintain orthogonality among the excited signals; multiple antennas are excited at the same time. This means just one FDTD simulation is needed whereas the conventional method demands as many simulations as there are transmitting antennas. The simulation of a 2×2 multi-antenna system shows that the proposed method matches the performance of the conventional method even though its computation time is much shorter.

  • N-Shift ZCZ Pilot Sequence Design for High Accuracy Navigation Based on Broadband Air-to-Ground Communication System

    Chao ZHANG  Keke PANG  Lu MA  

     
    LETTER

      Vol:
    E98-A No:11
      Page(s):
    2270-2273

    The pilot symbols in the broadband Air-to-Ground (A/G) communications system, e.g., L-band Digital Aeronautical Communications System (L-DACS1), are expected to be also utilized for navigation. In order to identify the co-channel signals from different Ground Stations (GSs), the N-Shift Zero Correlation Zone (NS-ZCZ) sequences are employed for pilot sequences. The ideal correlation property of the proposed pilot sequence in ZCZ can maintain the signal with less co-channel interference. The simulation confirms that the more co-channel GSs are employed, the higher navigation accuracy can be achieved.

  • Efficient Window-Based Channel Estimation for OFDM System in Multi-Path Fast Time-Varying Channels

    Yih-Haw JAN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:11
      Page(s):
    2330-2340

    Orthogonal frequency division multiplexing (OFDM) channel estimation is the key technique used in broadband wireless networks. The Doppler frequency caused by fast mobility environments will cause inter-carrier interference (ICI) and degrade the performance of OFDM systems. Due to the severe ICI, channel estimation becomes a difficult task in higher mobility scenarios. Our aim is to propose a pilot-aided channel estimation method that is robust to high Doppler frequency with low computational complexity and pilot overheads. In this paper, the time duration of each estimate covers multiple consecutive OFDM symbols, named a “window”. A close-form of polynomial channel modeling is derived. The proposed method is initialized to the least squares (LS) estimates of the channels corresponding to the time interval of the pilot symbols within the window. Then, the channel interpolation is performed in the entire window. The results of computer simulations and computation complexity evaluations show that the proposed technique is robust to high Doppler frequency with low computation complexity and low pilot overheads. Compared with the state-of-the-art method and some conventional methods, the new technique proposed here has much lower computational complexity while offering comparable performance.

  • Low Complexity Millimeter-Wave LOS-MIMO Systems with Uniform Circular Arrays for Small Cells Wireless Backhaul

    Liang ZHOU  Yoji OHASHI  Makoto YOSHIDA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:11
      Page(s):
    2348-2358

    The dramatic growth in wireless data traffic has triggered the investigation of fifth generation (5G) wireless communication systems. Small cells will play a very important role in 5G to meet the 5G requirements in spectral efficiency, energy savings, etc. In this paper, we investigate low complexity millimeter-wave communication systems with uniform circular arrays (UCAs) in line-of-sight (LOS) multiple-input multiple-output (MIMO) channels, which are used in fixed wireless access such as small cell wireless backhaul for 5G. First, we demonstrate that the MIMO channel matrices for UCAs in LOS-MIMO channels are circulant matrices. Next, we provide a detailed derivation of the unified optimal antenna placement which makes MIMO channel matrices orthogonal for 3×3 and 4×4 UCAs in LOS channels. We also derive simple analytical expressions of eigenvalues and capacity as a function of array design (link range and array diameters) for the concerned systems. Finally, based on the properties of circulant matrices, we propose a high performance low complexity LOS-MIMO precoding system that combines forward error correction (FEC) codes and spatial interleaver with the fixed IDFT precoding matrix. The proposed precoding system for UCAs does not require the channel knowledge for estimating the precoding matrix at the transmitter under the LOS condition, since the channel matrices are circulant ones for UCAs. Simulation results show that the proposed low complexity system is robust to various link ranges and can attain excellent performance in strong LOS environments and channel estimation errors.

  • Strongly Secure Scan Design Using Generalized Feed Forward Shift Registers

    Hideo FUJIWARA  Katsuya FUJIWARA  

     
    LETTER-Dependable Computing

      Pubricized:
    2015/06/24
      Vol:
    E98-D No:10
      Page(s):
    1852-1855

    In our previous work [12], [13], we introduced generalized feed-forward shift registers (GF2SR, for short) to apply them to secure and testable scan design, where we considered the security problem from the viewpoint of the complexity of identifying the structure of GF2SRs. Although the proposed scan design is secure in the sense that the structure of a GF2SR cannot be identified only from the primary input/output relation, it may not be secure if part of the contents of the circuit leak out. In this paper, we introduce a more secure concept called strong security such that no internal state of strongly secure circuits leaks out, and present how to design such strongly secure GF2SRs.

  • Distributed Utility Maximization with Backward Physical Signaling in Interference-Limited Wireless Systems

    Hye J. KANG  Chung G. KANG  

     
    PAPER-Network

      Vol:
    E98-B No:10
      Page(s):
    2033-2039

    In this paper, we consider a distributed power control scheme that can maximize overall capacity of an interference-limited wireless system in which the same radio resource is spatially reused among different transmitter-receiver pairs. This power control scheme employs a gradient-descent method in each transmitter, which adapts its own transmit power to co-channel interference dynamically to maximize the total weighted sum rate (WSR) of the system over a given interval. The key contribution in this paper is to propose a common feedback channel, over which a backward physical signal is accumulated for computing the gradient of the transmit power in each transmitter, thereby significantly reducing signaling overhead for the distributed power control. We show that the proposed power control scheme can achieve almost 95% of its theoretical upper WSR bound, while outperforming the non-power-controlled system by roughly 63% on average.

  • A Comprehensive Survey of Potential Game Approaches to Wireless Networks Open Access

    Koji YAMAMOTO  

     
    INVITED SURVEY PAPER

      Vol:
    E98-B No:9
      Page(s):
    1804-1823

    Potential games form a class of non-cooperative games where the convergent of unilateral improvement dynamics is guaranteed in many practical cases. The potential game approach has been applied to a wide range of wireless network problems, particularly to a variety of channel assignment problems. In this paper, the properties of potential games are introduced, and games in wireless networks that have been proven to be potential games are comprehensively discussed.

  • A Direction Finding Method Based on Rotating Interferometer and Its Performance Analysis

    Dexiu HU  Zhen HUANG  Jianhua LU  

     
    PAPER-Antennas and Propagation

      Vol:
    E98-B No:9
      Page(s):
    1858-1864

    This paper proposes and analyses an improved direction finding (DF) method that uses a rotating interferometer. The minimum sampling frequency is deduced in order to eliminate the phase ambiguity associated with a long baseline, the influence of phase imbalance of receiver is quantitatively discussed and the Root Mean Square Error (RMSE) of both bearing angle and pitch angle are also demonstrated. The theoretical analysis of the rotating interferometer is verified by simulation results, which show that it achieves better RMSE performance than the conventional method.

  • Fast Estimation of Shadowing Effects in Millimeter-Wave Short Range Communication by Modified Edge Representation (MER)

    Maifuz ALI  Makoto ANDO  

     
    PAPER-Antennas and Propagation

      Vol:
    E98-B No:9
      Page(s):
    1873-1881

    Radio channel modeling is fundamental for designing wireless communication systems. In millimeter or sub-millimeter wave short range communication, shadowing effect by electrically-large objects is one of the most important factors determining the field strength and thus the coverage. Unfortunately, numerical methods like MoM, FDTD, FEM are unable to compute the field scattered by large objects due to their excessive time and memory requirements. Ray theory like geometrical theory of diffraction (GTD) by Keller is an effective and popular solution but suffers various kinds of singularities at geometrical boundaries such as incidence shadow boundary (ISB) or reflection shadow boundary (RSB). Modified edge representation (MER) equivalent edge current (EEC) is an accurate and a fast high frequency diffraction technique which expresses the fields in terms of line integration. It adopts classical Keller-type knife-edge diffraction coefficients and still provides uniform and highly accurate fields everywhere including geometrical boundaries. MER is used here to compute the millimeter-wave field distribution in compact range communication systems where shadowing effects rather than multi-path ones dominate the radio environments. For further simplicity, trigonometric functions in Keller's diffraction coefficients are replaced by the path lengths of source to the observer via the edge point of integration of the scatterers in the form of Fresnel zone number (FZN). Complexity, Computation time and the memory were reduced drastically without degrading the accuracy. The dipole wave scattering from flat rectangular plates is discussed with numerical examples.

  • Burst-by-Burst Adaptive DF Relay Systems with PSA-CE Methods over Quasi-Static Rayleigh Fading Channels

    Kyunbyoung KO  Sungmook LIM  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:8
      Page(s):
    1614-1621

    In this paper, we propose an analytical approach for adaptive decode-and-forward (ADF) relaying schemes consisting of burst data transmission based on pilot symbol assisted-channel estimation (PSA-CE) methods over quasi-static Rayleigh fading channels. At first, we focus on the error-event at relay nodes in which the transmission mode switching is carried out burst by burst, whereas previous studies assumed the transmission mode switching symbol-by-symbol, thus showing lower error rate bound. Under consideration of burst transmission for ADF relay systems, we derive exact error rate expressions which better estimate the performance of actual systems. Then, the average bit and burst error rates are derived in approximated expressions for an arbitrary link signal-to-noise ratio (SNR) related with channel estimation errors. Their accuracy is confirmed by comparison with simulation results. Furthermore, ADF relay systems with PSA-CE schemes are confirmed to select correctly decoded relay nodes without additional signaling between relay nodes and the destination node and it is verified to achieve the performance at a cost of negligible SNR loss.

  • Performance of Open-Loop Transmit Diversity with Intra-Subframe Frequency Hopping and Iterative Decision-Feedback Channel Estimation for DFT-Precoded OFDMA

    Lianjun DENG  Teruo KAWAMURA  Hidekazu TAOKA  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E98-B No:8
      Page(s):
    1492-1505

    Open-loop (OL) transmit diversity is more subject to the influence of channel estimation error than closed-loop (CL) transmit diversity, although it has the merit of providing better performance in fast Doppler frequency environments because it doesn't require a feedback signal. This paper proposes an OL transmit diversity scheme combined with intra-subframe frequency hopping (FH) and iterative decision-feedback channel estimation (DFCE) in a shared channel for discrete Fourier transform (DFT)-precoded orthogonal frequency division multiple access (OFDMA). We apply intra-subframe FH to OL transmit diversity to mitigate the reduction in the diversity gain under high fading correlation conditions among antennas and iterative DFCE to improve the channel estimation accuracy. Computer simulation results show that the required average received signal-to-noise power ratio at the average block error rate (BLER) of 10-2 of the space-time block code (STBC) with intra-subframe FH is reduced to within approximately 0.8dB compared to codebook-based CL transmit diversity when using iterative DFCE at the maximum Doppler frequency of fD =5.55Hz. Moreover, it is shown that STBC with intra-subframe FH and iterative DFCE achieves much better BLER performance compared to CL transmit diversity when fD is higher than approximately 30Hz since the tracking ability of the latter degrades due to the fast fading variation in its feedback loop.

  • A Performance Study to Ensure Emergency Communications during Large Scale Disasters Using Satellite/Terrestrial Integrated Mobile Communications Systems

    Kazunori OKADA  Takayuki SHIMAZU  Akira FUJIKI  Yoshiyuki FUJINO  Amane MIURA  

     
    PAPER

      Vol:
    E98-A No:8
      Page(s):
    1627-1636

    The Satellite/Terrestrial Integrated mobile Communication System (STICS), which allows terrestrial mobile phones to communicate directly through a satellite, has been studied [1]. Satellites are unaffected by the seismic activity that causes terrestrial damage, and therefore, the STICS can be expected to be a measure that ensures emergency call connection. This paper first describes the basic characteristics of call blocking rates of terrestrial mobile phone systems in areas where non-functional base stations are geographically clustered, as investigated through computer simulations that showed an increased call blocking rate as the number of non-functional base stations increased. Further simulations showed that restricting the use of the satellite system for emergency calls only ensures the STICS's capacity to transmit emergency communications; however, these simulations also revealed a weakness in the low channel utilization rate of the satellite system [2]. Therefore, in this paper, we propose increasing the channel utilization rate with a priority channel framework that divides the satellite channels between priority channels for emergency calls and non-priority channels that can be available for emergency or general use. Simulations of this priority channel framework showed that it increased the satellite system's channel utilization rate, while continuing to ensure emergency call connection [3]. These simulations showed that the STICS with a priority channel framework can provide efficient channel utilization and still be expected to provide a valuable secondary measure to ensure emergency communications in areas with clustered non-functional base stations during large-scale disasters.

  • Compressive Channel Estimation Using Distribution Agnostic Bayesian Method

    Yi LIU  Wenbo MEI  Huiqian DU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:8
      Page(s):
    1672-1679

    Compressive sensing (CS)-based channel estimation considerably reduces pilot symbols usage by exploiting the sparsity of the propagation channel in the delay-Doppler domain. In this paper, we consider the application of Bayesian approaches to the sparse channel estimation in orthogonal frequency division multiplexing (OFDM) systems. Taking advantage of the block-sparse structure and statistical properties of time-frequency selective channels, the proposed Bayesian method provides a more efficient and accurate estimation of the channel status information (CSI) than do conventional CS-based methods. Moreover, our estimation scheme is not limited to the Gaussian scenario but is also available for channels that have non-Gaussian priors or unknown probability density functions. This characteristic is notably useful when the prior statistics of channel coefficients cannot be precisely estimated. We also design a combo pilot pattern to improve the performance of the proposed estimation scheme. Simulation results demonstrate that our method performs well at high Doppler frequencies.

  • Performance of Outer-Loop Control for Adaptive Modulation and Coding Based on Mutual Information in OFDM MIMO SDM

    Teppei EBIHARA  Yasuhiro KUGE  Hidekazu TAOKA  Nobuhiko MIKI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E98-B No:8
      Page(s):
    1506-1517

    This paper presents the performance of outer-loop control for selecting the best modulation and coding scheme (MCS) based on mutual information (MI) for orthogonal frequency division multiplexing (OFDM) multiple-input multiple-output (MIMO) spatial division multiplexing (SDM). We propose an outer-loop control scheme that updates the measured MI per information bit value for selecting the best MCS from a mapping table that associates the block error rate (BLER) and MI per bit instead of directly updating the MCS selection threshold so that the required BLER is satisfied. The proposed outer-loop control is applicable to continuous data transmission including intermittent transmission with a short blank period. Moreover, we compare the measured BLER and throughput performance for two types of outer-loop control methods: instantaneous block error detection and moving-average BLER detection. In the paper, we use maximum likelihood detection (MLD) for MIMO SDM. Computer simulation results optimize the step size for the respective outer-loop control schemes for selecting the best MCS that achieves the higher throughput and the target BLER simultaneously. Computer simulation results also show that by using the most appropriate step size, the outer-loop control method based on the instantaneous block error detection of each physical resource block is more appropriate than that based on the moving-average BLER detection from the viewpoints of achieving the target BLER more accurately and higher throughput.

281-300hit(1697hit)