The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] channel(1697hit)

261-280hit(1697hit)

  • Real-Time Joint Channel and Hyperparameter Estimation Using Sequential Monte Carlo Methods for OFDM Mobile Communications

    Junichiro HAGIWARA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:8
      Page(s):
    1655-1668

    This study investigates a real-time joint channel and hyperparameter estimation method for orthogonal frequency division multiplexing mobile communications. The channel frequency response of the pilot subcarrier and its fixed hyperparameters (such as channel statistics) are estimated using a Liu and West filter (LWF), which is based on the state-space model and sequential Monte Carlo method. For the first time, to our knowledge, we demonstrate that the conventional LWF biases the hyperparameter due to a poor estimate of the likelihood caused by overfitting in noisy environments. Moreover, this problem cannot be solved by conventional smoothing techniques. For this, we modify the conventional LWF and regularize the likelihood using a Kalman smoother. The effectiveness of the proposed method is confirmed via numerical analysis. When both of the Doppler frequency and delay spread hyperparameters are unknown, the conventional LWF significantly degrades the performance, sometimes below that of least squares estimation. By avoiding the hyperparameter estimation failure, our method outperforms the conventional approach and achieves good performance near the lower bound. The coding gain in our proposed method is at most 10 dB higher than that in the conventional LWF. Thus, the proposed method improves the channel and hyperparameter estimation accuracy. Derived from mathematical principles, our proposal is applicable not only to wireless technology but also to a broad range of related areas such as machine learning and econometrics.

  • Performance Analysis of DF Relaying Cooperative Systems

    Jingjing WANG  Lingwei XU  Xinli DONG  Xinjie WANG  Wei SHI  T. Aaron GULLIVER  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:7
      Page(s):
    1577-1583

    In this paper, the average symbol error probability (SEP) performance of decode-and-forward (DF) relaying mobile-to-mobile (M2M) systems with transmit antenna selection (TAS) over N-Nakagami fading channels is investigated. The moment generating function (MGF) method is used to derive exact SEP expressions, and the analysis is verified via simulation. The optimal power allocation problem is investigated. Performance results are presented which show that the fading coefficient, number of cascaded components, relative geometrical gain, number of antennas, and power allocation parameter have a significant effect on the SEP.

  • Asymmetric Leakage from Multiplier and Collision-Based Single-Shot Side-Channel Attack

    Takeshi SUGAWARA  Daisuke SUZUKI  Minoru SAEKI  

     
    PAPER

      Vol:
    E99-A No:7
      Page(s):
    1323-1333

    The single-shot collision attack on RSA proposed by Hanley et al. is studied focusing on the difference between two operands of multiplier. It is shown that how leakage from integer multiplier and long-integer multiplication algorithm can be asymmetric between two operands. The asymmetric leakage is verified with experiments on FPGA and micro-controller platforms. Moreover, we show an experimental result in which success and failure of the attack is determined by the order of operands. Therefore, designing operand order can be a cost-effective countermeasure. Meanwhile we also show a case in which a particular countermeasure becomes ineffective when the asymmetric leakage is considered. In addition to the above main contribution, an extension of the attack by Hanley et al. using the signal-processing technique of Big Mac Attack is presented.

  • Exploiting EEG Channel Correlations in P300 Speller Paradigm for Brain-Computer Interface

    Yali LI  Hongma LIU  Shengjin WANG  

     
    PAPER-Biological Engineering

      Pubricized:
    2016/03/07
      Vol:
    E99-D No:6
      Page(s):
    1653-1662

    A brain-computer interface (BCI) translates the brain activity into commands to control external devices. P300 speller based character recognition is an important kind of application system in BCI. In this paper, we propose a framework to integrate channel correlation analysis into P300 detection. This work is distinguished by two key contributions. First, a coefficient matrix is introduced and constructed for multiple channels with the elements indicating channel correlations. Agglomerative clustering is applied to group correlated channels. Second, the statistics of central tendency are used to fuse the information of correlated channels and generate virtual channels. The generated virtual channels can extend the EEG signals and lift up the signal-to-noise ratio. The correlated features from virtual channels are combined with original signals for classification and the outputs of discriminative classifier are used to determine the characters for spelling. Experimental results prove the effectiveness and efficiency of the channel correlation analysis based framework. Compared with the state-of-the-art, the recognition rate was increased by both 6% with 5 and 10 epochs by the proposed framework.

  • Performance of All-Optical Amplify-and-Forward WDM/FSO Relaying Systems over Atmospheric Dispersive Turbulence Channels

    Phuc V. TRINH  Ngoc T. DANG  Truong C. THANG  Anh T. PHAM  

     
    PAPER

      Vol:
    E99-B No:6
      Page(s):
    1255-1264

    This paper newly proposes and theoretically analyzes the performance of multi-hop free-space optical (FSO) systems employing optical amplify-and-forward (OAF) relaying technique and wavelength division multiplexing (WDM). The proposed system can provide a low cost, low latency, high flexibility, and large bandwidth access network for multiple users in areas where installation of optical fiber is unfavorable. In WDM/FSO systems, WDM channels suffer from the interchannel crosstalk while FSO channels can be severely affected by the atmospheric turbulence. These impairments together with the accumulation of background and amplifying noises over multiple relays significantly degrade the overall system performance. To deal with this problem, the use of the M-ary pulse position modulation (M-PPM) together with the OAF relaying technique is advocated as a powerful remedy to mitigate the effects of atmospheric turbulence. For the performance analysis, we use a realistic model of Gaussian pulse propagation to investigate major atmospheric effects, including signal turbulence and pulse broadening. We qualitatively discuss the impact of various system parameters, including the required average transmitted powers per information bit corresponding to specific values of bit error rate (BER), transmission distance, number of relays, and turbulence strength. Our numerical results are also thoroughly validated by Monte-Carlo (M-C) simulations.

  • Alignment Tolerance in Multiple-Stream Transmission Using Orthogonal Directivities under Line-of-Sight Environments

    Maki ARAI  Tomohiro SEKI  Ken HIRAGA  Kazumitsu SAKAMOTO  Tadao NAKAGAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:6
      Page(s):
    1362-1370

    A method for increasing alignment tolerance in simple multiple-stream transmission is described. Its use of π-shifted antenna directivity phase enables it to cancel interference even when antenna placement deviations occur. The interference cancellation by using π-shifted directivities provides higher alignment tolerance than that with conventional fixed weight methods. It also provides smaller channel gain variation than can be obtained using fixed weights even when antenna displacement occurs. An objective function is described that is determined by the alignment tolerance. The function is defined to maximize the alignment tolerance. The method's validity is confirmed by an experimental analysis of two-stream transmission in which the alignment tolerance of the proposed method is compared to that of conventional fixed weight methods.

  • Quality-Based Channel Allocation Scheme with Predistortion in Multi-Channel Radio over Fiber System

    Withawat TANGTRONGPAIROJ  Yafei HOU  Takeshi HIGASHINO  Minoru OKADA  

     
    PAPER-Lasers, Quantum Electronics

      Vol:
    E99-C No:5
      Page(s):
    563-573

    Radio over Fiber (RoF) is a promising solution for providing wireless access services. Heterogeneous radio signals are transferred via an optical fiber link using an analog transmission technique. When the RoF and the radio frequency (RF) devices have a nonlinear characteristic, these will create the intermodulation products (IMPs) in the system and generate the intermodulation distortion (IMD). In this paper, the IMD interference in the uplink RF signals from the coupling effect between the downlink and the uplink antennas has been addressed. We propose a method using the dynamic channel allocation (DCA) algorithm with the predistortion (PD) technique to improve the throughput performance of the multi-channel RoF system. The carrier to distortion plus noise power ratio (CDNR) is evaluated for all channel allocation combinations; then the best channel combination is assigned as a set of active channels to minimize the effect of IMD. The results show that the DCA with PD has the lowest IMD and obtains a better throughput performance.

  • Performance Analysis of Two-Way Relaying Network with Adaptive Modulation in the Presence of Imperfect Channel Information

    Kyu-Sung HWANG  MinChul JU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:5
      Page(s):
    1170-1179

    In this paper, we study the impact of imperfect channel information on an amplify-and-forward (AF)-based two-way relaying network (TWRN) with adaptive modulation which consists of two end-terminals and multiple relays. Specifically, we consider a single-relay selection scheme of the TWRN in the presence of outdated channel state information (CSI) and channel estimation errors. First, we choose the best relay based on outdated CSI, and perform adaptive modulation on both relaying paths with channel estimation errors. Then, we discuss the impact of the outdated CSI on the statistics of the signal-to-noise ratio (SNR) per hop. In addition, we formulate the end-to-end SNRs with channel estimation errors and offer statistic analyses in the presence of both the outdated CSI and channel estimation errors. Finally, we provide the performance analyses of the proposed TWRN with adaptive modulation in terms of average spectral efficiency, average bit error rate, and outage probability. Numerical examples are given to verify our obtained analytical results for various system conditions.

  • ResilientFlow: Deployments of Distributed Control Channel Maintenance Modules to Recover SDN from Unexpected Failures

    Takuya OMIZO  Takuma WATANABE  Toyokazu AKIYAMA  Katsuyoshi IIDA  

     
    PAPER

      Vol:
    E99-B No:5
      Page(s):
    1041-1053

    Although SDN provides desirable characteristics such as the manageability, flexibility and extensibility of the networks, it has a considerable disadvantage in its reliability due to its centralized architecture. To protect SDN-enabled networks under large-scale, unexpected link failures, we propose ResilientFlow that deploys distributed modules called Control Channel Maintenance Module (CCMM) for every switch and controllers. The CCMMs makes switches able to maintain their own control channels, which are core and fundamental part of SDN. In this paper, we design, implement, and evaluate the ResilientFlow.

  • Cluster Power Variation Characteristics for 3GHz-Band MIMO Communication System in a Crowded Indoor Environment

    Kentaro SAITO  Tetsuro IMAI  Koshiro KITAO  Yukihiko OKUMURA  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:5
      Page(s):
    1131-1142

    In recent years, multiple-input multiple-output (MIMO) channel models for crowded areas, such as indoor offices, shops, and outdoor hotspot environments, have become a topic of significant interest. In such crowded environments, propagation paths are frequently shadowed by moving objects, such as pedestrians or vehicles. These shadowing effects can cause time variations in the delay and angle-of-arrival (AoA) characteristics of a channel. In this paper, we propose a method for modeling the shadowing effects of pedestrians in a cluster-based channel model. The proposed method uses cluster power variations to model the time-varying channel properties. We also propose a novel method for estimating the cluster power variation properties from measured data. In order to validate our proposed method, channel sounding in the 3GHz band is conducted in a cafeteria during lunchtime. The results for the K parameter, delay spreads, and AoA azimuth spreads are compared for the measured data and the channel data generated using the proposed method. The results indicate that the time-varying delay-AoA characteristics can be effectively modeled using our proposed method.

  • Properties of Generalized Feedback Shift Registers for Secure Scan Design

    Hideo FUJIWARA  Katsuya FUJIWARA  

     
    LETTER-Dependable Computing

      Pubricized:
    2016/01/21
      Vol:
    E99-D No:4
      Page(s):
    1255-1258

    In our previous work [12], [13], we introduced generalized feed-forward shift registers (GF2SR, for short) to apply them to secure and testable scan design. In this paper, we introduce another class of generalized shift registers called generalized feedback shift registers (GFSR, for short), and consider the properties of GFSR that are useful for secure scan design. We present how to control/observe GFSR to guarantee scan-in and scan-out operations that can be overlapped in the same way as the conventional scan testing. Testability and security of scan design using GFSR are considered. The cardinality of each class is clarified. We also present how to design strongly secure GFSR as well as GF2SR considered in [13].

  • Sub-Band Noise Reduction in Multi-Channel Digital Hearing Aid

    Qingyun WANG  Ruiyu LIANG  Li JING  Cairong ZOU  Li ZHAO  

     
    LETTER-Speech and Hearing

      Pubricized:
    2015/10/14
      Vol:
    E99-D No:1
      Page(s):
    292-295

    Since digital hearing aids are sensitive to time delay and power consumption, the computational complexity of noise reduction must be reduced as much as possible. Therefore, some complicated algorithms based on the analysis of the time-frequency domain are very difficult to implement in digital hearing aids. This paper presents a new approach that yields an improved noise reduction algorithm with greatly reduce computational complexity for multi-channel digital hearing aids. First, the sub-band sound pressure level (SPL) is calculated in real time. Then, based on the calculated sub-band SPL, the noise in the sub-band is estimated and the possibility of speech is computed. Finally, a posteriori and a priori signal-to-noise ratios are estimated and the gain function is acquired to reduce the noise adaptively. By replacing the FFT and IFFT transforms by the known SPL, the proposed algorithm greatly reduces the computation loads. Experiments on a prototype digital hearing aid show that the time delay is decreased to nearly half that of the traditional adaptive Wiener filtering and spectral subtraction algorithms, but the SNR improvement and PESQ score are rather satisfied. Compared with modulation frequency-based noise reduction algorithm, which is used in many commercial digital hearing aids, the proposed algorithm achieves not only more than 5dB SNR improvement but also less time delay and power consumption.

  • Three-Dimensional Over-The-Air Assessment for Vertically Arranged MIMO Array Antennas

    Kun LI  Kazuhiro HONDA  Koichi OGAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:1
      Page(s):
    167-176

    This paper presents a new methodology of the over-the-air (OTA) assessment for vertically arranged multiple-input multiple-output (MIMO) array antennas. Particular emphasis is placed on how well handset MIMO antennas with a vertically arranged structure are characterized using the limited number of scatterers implemented in a fading emulator. First we studied the mechanism of the arrangement of scatterers on the variation of channel responses using a proposed three-dimensional analytical model. It is shown that the condition of a 3D-OTA with the prescribed parameters allows the correlation to be reduced, which permits the channel capacity to increase in the same manner that sufficient scatterers are distributed over the entire solid angle. Then the appropriate scatterers arrangement for a 3D-OTA instrument considering the number of DUT antenna elements and multipath characteristics is investigated. The analytical results show that a suitable scatterers arrangement can be determined for various conditions of multipath environments and numbers of array elements, and that the arrangement can be employed for designing an actual 3D-OTA apparatus.

  • Weighted-Polarization Wearable MIMO Antenna with Three Orthogonally Arranged Dipoles Based on RF Signal Processing

    Kazuhiro HONDA  Kun LI  Koichi OGAWA  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:1
      Page(s):
    58-68

    In this paper, we present a weighted-polarization wearable multiple-input multiple-output (MIMO) antenna that is based on radio-frequency (RF) signal processing to realize ultra-high-speed and high-capacity mobile communications. The proposed antenna is comprised of three orthogonal dipoles, two of which can be selected according to a weight function in different usage scenarios. The weight function is determined by considering the variation in the cross-polarization power ratio (XPR) and the antenna inclination angle which depend on the radio-propagation environment and human motion. To confirm the suitability of the proposed antenna, we perform preliminary experiments to evaluate the channel capacity of a weighted-polarization wearable MIMO antenna with an arm-swinging dynamic phantom. The measured and analytical results are in good agreement, which verifies the effectiveness of the proposed antenna. We demonstrate that the proposed antenna is suitable for realizing gigabit mobile communications in future wearable MIMO applications.

  • Wideband Power Spectrum Sensing and Reconstruction Based on Single Channel Sub-Nyquist Sampling

    Weichao SUN  Zhitao HUANG  Fenghua WANG  Xiang WANG  Shaoyi XIE  

     
    PAPER

      Vol:
    E99-A No:1
      Page(s):
    167-176

    A major challenge in wideband spectrum sensing, in cognitive radio system for example, is the requirement of a high sampling rate which may exceed today's best analog-to-digital converters (ADCs) front-end bandwidths. Compressive sampling is an attractive way to reduce the sampling rate. The modulated wideband converter (MWC) proposed recently is one of the most successful compressive sampling hardware architectures, but it has high hardware complexity owing to its parallel channels structure. In this paper, we design a single channel sub-Nyquist sampling scheme to bring substantial savings in terms of not only sampling rate but also hardware complexity, and we also present a wideband power spectrum sensing and reconstruction method for bandlimited wide-sense stationary (WSS) signals. The total sampling rate is only one channel rate of the MWC's. We evaluate the performance of the sensing model by computing the probability of detecting signal occupancy in terms of the signal-to-noise ratio (SNR) and other practical parameters. Simulation results underline the promising performance of proposed approach.

  • Open-Loop Correlation Reduction Precoding in Overloaded MIMO-OFDM Systems

    Hikari MATSUOKA  Yoshihito DOI  Tatsuro YABE  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:1
      Page(s):
    202-210

    This paper proposes an open-loop correlation reduction precoding scheme for overloaded multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. In overloaded MIMO-OFDM systems, frequency diversity through joint maximum likelihood (ML) decoding suppresses performance degradation owing to spatial signal multiplexing. However, on a line-of-sight (LOS) channel, a channel matrix may have a large correlation between coded symbols transmitted on separate subcarriers. The correlation reduces the frequency diversity gain and deteriorates the signal separation capability. Thus, in the proposed scheme, open-loop precoding is employed at the transmitter of an overloaded MIMO system in order to reduce the correlation between codewords transmitted on different signal streams. The proposed precoding scheme changes the amplitude as well as the phase of the coded symbols transmitted on different subcarriers. Numerical results obtained through computer simulation show that the proposed scheme improves the bit error rate performance on Rician channels. It is also shown that the proposed scheme greatly suppresses the performance degradation on an independent Rayleigh fading channel even though the amplitude of the coded symbols varies.

  • Indoor Channel Characterization and Performance Evaluation with Directional Antenna and Multiple Beam Combining

    Xiaoya ZUO  Ding WANG  Rugui YAO  Guomei ZHANG  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:1
      Page(s):
    104-114

    Ultra-wideband (UWB) beamforming is now attracting significant research attention for attaining spatial gain from array antennas. It is commonly believed that directional antenna based communication could improve the system performance. In order to further make clear the relationship between system performance and the antenna array beamforming, UWB indoor channels are extracted from practical measurements and circular horn antenna is used to characterize the channel properties and to evaluate the system performance. Using a single beam directional antenna with a certain half power beamwidth (HPBW), the channel capacity and the bit-error-rate (BER) performance of a UWB RAKE receiver are evaluated. In the line-of-sight (LOS) environments, the channel capacity and BER performance are improved with the beamwidth becoming smaller. However in the non-line-of-sight (NLOS) environments, the capacity and BER performance are not always better with directional antennas. And the variation trend between the system performance and the antenna beamwidth disappears. This is mainly because that there exist no dominant strong path components like those seen in LOS environments. Then beam combining is introduced to further improve the system performance. Simulation results show that the channel capacity and BER performance cloud be greatly improved by multiple beam combining, especially for the NLOS environments. This reminds us that when antenna beamforming is used to obtain array gain, the beamwidth should be carefully designed and beam combining is necessary to obtain optimal performance, especially in NLOS environments.

  • Asymptotic Error Probability Analysis of DQPSK/DDQPSK over Nakagami-m Fading Channels

    Hoojin LEE  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E99-B No:1
      Page(s):
    152-156

    In this paper, we derive two simple asymptotic closed-form formulas for the average bit error probability (BEP) of differential quaternary phase shift keying (DQPSK) with Gray encoding and a simple asymptotic approximation for the average symbol error probability (SEP) of doubly-differential quaternary phase shift keying (DDQPSK) in Nakagami-m fading channels. Compared with the existing BEP/SEP expressions, the derived concise formulas are much more effective in evaluating the asymptotic properties of DQPSK/DDQPSK with various Nakagami fading parameters, the accuracy of which is verified by extensive numerical results.

  • Outage Probability of Incremental Selection AF Relaying Scheme in Half-Duplex Cooperative Relay Networks

    Jeehoon LEE  Minjoong RIM  Kiseon KIM  

     
    PAPER-Network

      Vol:
    E98-B No:12
      Page(s):
    2439-2445

    An incremental relaying protocol is a promising scheme for preventing the inefficient use of resources in half-duplex cooperative relay networks. In particular, the incremental selection amplify-and-forward (ISAF) relaying scheme is a well-designed protocol under the condition that the source-to-destination (SD) link is static during the two transmission phases. However, from a practical viewpoint, the SD link is not static but varies with time, and thus the ISAF relaying scheme may not work well in the field. In this work, we first show that the outage performance of the ISAF relaying scheme may decrease when the SD link is not static during the two transmission phases. We then propose a modified version of the ISAF relaying scheme which overcomes such a limitation of the ISAF relaying scheme under time-varying environments. Finally, numerical and simulation results are provided to support our findings.

  • A Fundamental Inequality for Lower-Bounding the Error Probability for Classical and Classical-Quantum Multiple Access Channels and Its Applications

    Takuya KUBO  Hiroshi NAGAOKA  

     
    PAPER-Shannon Theory

      Vol:
    E98-A No:12
      Page(s):
    2376-2383

    In the study of the capacity problem for multiple access channels (MACs), a lower bound on the error probability obtained by Han plays a crucial role in the converse parts of several kinds of channel coding theorems in the information-spectrum framework. Recently, Yagi and Oohama showed a tighter bound than the Han bound by means of Polyanskiy's converse. In this paper, we give a new bound which generalizes and strengthens the Yagi-Oohama bound, and demonstrate that the bound plays a fundamental role in deriving extensions of several known bounds. In particular, the Yagi-Oohama bound is generalized to two different directions; i.e, to general input distributions and to general encoders. In addition we extend these bounds to the quantum MACs and apply them to the converse problems for several information-spectrum settings.

261-280hit(1697hit)