The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] combining(156hit)

1-20hit(156hit)

  • Global Navigation Satellite System Signal Phase Combining and Performance of Distributed Antenna Arrays Open Access

    Wenfei GUO  Jun ZHANG  Chi GUO  Weijun FENG  

     
    PAPER-Navigation, Guidance and Control Systems

      Vol:
    E107-B No:10
      Page(s):
    670-680

    Low signal power and susceptibility to interference cause difficulties for traditional global navigation satellite system (GNSS) receivers in tracking weak signals. Extending coherent integration time is a common approach for enhancing signal gain. However, coherent integration time cannot be indefinitely increased owing to navigation bit sign transition, receiver dynamics, and clock noises. This study proposes a cross-correlation phase combining (CPC) algorithm suitable for distributed multi-antenna receivers to improve carrier-tracking performance in weak GNSS signal conditions. This algorithm cross-correlates each antenna’s intermediate frequency (IF) signal and local carrier to detect the phase differences. Subsequently, the IF signals are weighted to achieve phase alignment and coherently combined. The carrier-to-noise ratio (CNR) and carrier phase equation of the combined signal were derived for the CPC algorithm. Global positioning system (GPS) signals received by distributed antenna array with six elements were used to validate the performance of the algorithm. The results demonstrated that the CPC algorithm could effectively achieve signal phase alignment at 32 dB-Hz, resulting in a combined-signal CNR enhancement of 6 dB. The phase-tracking error variance was reduced by 72% at 30 dB-Hz compared with that of a single-antenna signal. The algorithm exhibited low phased array calibration requirements, overcoming the limitations associated with coherent integration time and effectively enhancing tracking performance in weak-signal environments.

  • HARQ Using Hierarchical Tree-Structured Random Access Identifiers in NOMA-Based Random Access Open Access

    Megumi ASADA  Nobuhide NONAKA  Kenichi HIGUCHI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/02/21
      Vol:
    E106-B No:8
      Page(s):
    696-704

    We propose an efficient hybrid automatic repeat request (HARQ) method that simultaneously achieves packet combining and resolution of the collisions of random access identifiers (RAIDs) during retransmission in a non-orthogonal multiple access (NOMA)-based random access system. Here, the RAID functions as a separator for simultaneously received packets that use the same channel in NOMA. An example of this is a scrambling code used in 4G and 5G systems. Since users independently select a RAID from the candidate set prepared by the system, the decoding of received packets fails when multiple users select the same RAID. Random RAID reselection by each user when attempting retransmission can resolve a RAID collision; however, packet combining between the previous and retransmitted packets is not possible in this case because the base station receiver does not know the relationship between the RAID of the previously transmitted packet and that of the retransmitted packet. To address this problem, we propose a HARQ method that employs novel hierarchical tree-structured RAID groups in which the RAID for the previous packet transmission has a one-to-one relationship with the set of RAIDs for retransmission. The proposed method resolves RAID collisions at retransmission by randomly reselecting for each user a RAID from the dedicated RAID set from the previous transmission. Since the relationship between the RAIDs at the previous transmission and retransmission is known at the base station, packet combining is achieved simultaneously. Computer simulation results show the effectiveness of the proposed method.

  • Metric-Combining Multiuser Detection Using Replica Cancellation with RTS and Enhanced CTS for High-Reliable and Low-Latency Wireless Communications

    Hideya SO  Kazuhiko FUKAWA  Hayato SOYA  Yuyuan CHANG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/06/01
      Vol:
    E104-B No:11
      Page(s):
    1441-1453

    In unlicensed spectrum, wireless communications employing carrier sense multiple access with collision avoidance (CSMA/CA) suffer from longer transmission delay time as the number of user terminals (UTs) increases, because packet collisions are more likely to occur. To cope with this problem, this paper proposes a new multiuser detection (MUD) scheme that uses both request-to-send (RTS) and enhanced clear-to-send (eCTS) for high-reliable and low-latency wireless communications. As in conventional MUD scheme, the metric-combining MUD (MC-MUD) calculates log likelihood functions called metrics and accumulates the metrics for the maximum likelihood detection (MLD). To avoid increasing the number of states for MLD, MC-MUD forces the relevant UTs to retransmit their packets until all the collided packets are correctly detected, which requires a kind of central control and reduces the system throughput. To overcome these drawbacks, the proposed scheme, which is referred to as cancelling MC-MUD (CMC-MUD), deletes replicas of some of the collided packets from the received signals, once the packets are correctly detected during the retransmission. This cancellation enables new UTs to transmit their packets and then performs MLD without increasing the number of states, which improves the system throughput without increasing the complexity. In addition, the proposed scheme adopts RTS and eCTS. One UT that suffers from packet collision transmits RTS before the retransmission. Then, the corresponding access point (AP) transmits eCTS including addresses of the other UTs, which have experienced the same packet collision. To reproduce the same packet collision, these other UTs transmit their packets once they receive the eCTS. Computer simulations under one AP conditions evaluate an average carrier-to-interference ratio (CIR) range in which the proposed scheme is effective, and clarify that the transmission delay time of the proposed scheme is shorter than that of the conventional schemes. In two APs environments that can cause the hidden terminal problem, it is demonstrated that the proposed scheme achieves shorter transmission delay times than the conventional scheme with RTS and conventional CTS.

  • Spectrum Sensing with Selection Diversity Combining in Cognitive Radio

    Shusuke NARIEDA  Hiromichi OGASAWARA  Hiroshi NARUSE  

     
    PAPER-Communication Theory and Signals

      Vol:
    E103-A No:8
      Page(s):
    978-986

    This paper presents a novel spectrum sensing technique based on selection diversity combining in cognitive radio networks. In general, a selection diversity combining scheme requires a period to select an optimal element, and spectrum sensing requires a period to detect a target signal. We consider that both these periods are required for the spectrum sensing based on selection diversity combining. However, conventional techniques do not consider both the periods. Furthermore, spending a large amount of time in selection and signal detection increases their accuracy. Because the required period for spectrum sensing based on selection diversity combining is the summation of both the periods, their lengths should be considered while developing selection diversity combining based spectrum sensing for a constant period. In reference to this, we discuss the spectrum sensing technique based on selection diversity combining. Numerical examples are shown to validate the effectiveness of the presented design techniques.

  • BER due to Intersymbol Interference in Maximal-Ratio Combining Reception Analyzed Based on Equivalent Transmission-Path Model

    Yoshio KARASAWA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2019/09/06
      Vol:
    E103-B No:3
      Page(s):
    229-239

    The equivalent transmission-path model is a propagation-oriented channel model for predicting the bit error rate due to intersymbol interference in single-input single-output systems. We extend this model to develop a new calculation scheme for maximal-ratio combining diversity reception in single-input multiple-output configurations. A key part of the study is to derive a general formula expressing the joint probability density function of the amplitude ratio and phase difference of the two-path model. In this derivation, we mainly take a theoretical approach with the aid of Monte Carlo simulation. Then, very high-accuracy estimation of the average bit error rate due to intersymbol interference (ISI) for CQPSK calculated based on the model is confirmed by computer simulation. Finally, we propose a very simple calculation formula for the prediction of the BER due to ISI that is commonly applicable to various modulation/demodulation schemes, such as CQPSK, DQPSK, 16QAM, and CBPSK in maximal-ratio combining diversity reception.

  • Sign Reversal Channel Switching Method in Space-Time Block Code for OFDM Systems

    Hyeok Koo JUNG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E103-A No:2
      Page(s):
    567-570

    This paper proposes a simple source data exchange method for channel switching in space-time block code. If one transmits source data on another antenna, then the receiver should change combining method in order to adapt it. No one except knowing the channel switching sequence can decode the received data correctly. In case of exchanging data for channel switching, four orthogonal frequency division multiplexing symbols are exchanged according to a format of space-time block code. In this paper, I proposes two simple sign exchanges without exchanging four orthogonal-frequency division multiplexing symbols which occurs a different combining and channel switching method in the receiver.

  • Fully Integrated CMOS PAs with Two-Winding and Single-Winding Combined Transformer for WLAN Applications

    Se-Eun CHOI  Hyunjin AHN  Hyunsik RYU  Ilku NAM  Ockgoo LEE  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E101-C No:12
      Page(s):
    931-941

    Fully integrated CMOS power amplifiers (PAs) with a two-winding and single-winding combined transformer (TS transformer) are presented. The general analysis of the TS transformer and other power-combining transformers, i.e., the series-combining transformer and parallel-combining transformer, is presented in terms of the transformer design parameters. Compared with other power-combining transformers, the proposed power-combining TS transformer offers high-efficiency with a compact form factor. In addition, a fully integrated CMOS PA using the TS transformer with multi-gated transistors (MGTRs) and adaptive bias circuit has been proposed to improve linearity. The proposed PAs are implemented using 65-nm CMOS technology. The implemented PA with the TS transformer achieves a saturated output power of 26.7 dBm with drain efficiency (DE) of 47.7%. The PA achieves 20.13-dBm output power with 21.4% DE while satisfying the -25-dB error vector magnitude (EVM) requirement when tested with the WLAN 802.11g signal. The implemented PA using the TS transformer with MGTRs and adaptive bias circuit achieves the -30-dB EVM requirement up to an output power of 17.13 dBm with 10.43% DE when tested using the WLAN 802.11ac signal.

  • Symbol Error Probability Performance of Rectangular QAM with MRC Reception over Generalized α-µ Fading Channels

    Furqan Haider QURESHI  Qasim Umar KHAN  Shahzad Amin SHEIKH  Muhammad ZEESHAN  

     
    PAPER-Communication Theory and Signals

      Vol:
    E101-A No:3
      Page(s):
    577-584

    In this paper, a new and an accurate symbol error probability's analytical model of Rectangular Quadrature Amplitude Modulation in α-µ fading channel is presented for single-user single-input multi-output environment, which can be easily extended to generalized fading channels. The maximal-ratio combining technique is utilized at the receiving end and unified moment generating functions are used to derivate the results. The fading mediums considered are independent and non-identical. The mathematical model presented is applicable for slow and frequency non-selective fading channels only. The final expression is presented in terms of Meijer G-function; it contains single integrals with finite limits to evaluate the mathematical expressions with numerical techniques. The beauty of the model will help evaluate symbol error probability of rectangular quadrature amplitude modulation with spatial diversity over various fading mediums not addressed in this article. To check for the validity of derived analytical expressions, comparison is made between theoretical and simulation results at the end.

  • A Novel Failure Detection Circuit for SUMPLE Using Variability Index

    Leiou WANG  Donghui WANG  Chengpeng HAO  

     
    BRIEF PAPER-Electronic Circuits

      Vol:
    E101-C No:2
      Page(s):
    139-142

    SUMPLE, one of important signal combining approaches, its combining loss increases when a sensor in an array fails. A novel failure detection circuit for SUMPLE is proposed by using variability index. This circuit can effectively judge whether a sensor fails or not. Simulation results validate its effectiveness with respect to the existing algorithms.

  • Performance of Interference Rejection Combining Receiver Employing Minimum Mean Square Error Filter for Licensed-Assisted Access

    Jumpei YAMAMOTO  Shunichi BUSHISUE  Nobuhiko MIKI  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2017/07/13
      Vol:
    E101-B No:1
      Page(s):
    137-145

    To support the rapid increase of mobile traffic, the LTE-based air interface is expected to be employed in the unlicensed spectrum known as “Licensed-Assisted Access (LAA).” The LAA terminal, which employs an LTE-based air interface, suffers from interference from WiFi access points as well as the LAA base station. The interference rejection combining (IRC) receiver, which employs a linear minimum mean square error (MMSE) filter, can suppress this interference from WiFi access points in addition to that of the LAA base station. The IRC receiver is effective, since it requires no knowledge of the interference, which is generally difficult to obtain for different systems. In this paper, we use a link-level simulation to evaluate the performance of the IRC receiver in suppressing the interference from WiFi access points, and show that the IRC receiver can effectively cancel the interference from WiFi systems as well as LTE systems, although we observed a slight performance degradation due to the covariance matrix estimation error caused by the WiFi interference fluctuation in the frequency-domain.

  • A Linear Combining Scheme to Suppress Interference in Multiple Relay Systems

    Ahmet Ihsan CANBOLAT  Kazuhiko FUKAWA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/02/17
      Vol:
    E99-B No:8
      Page(s):
    1867-1873

    This paper proposes an interference suppression scheme based on linear combining for multiple relay systems. Interference from base stations and relays in neighboring cells degrades the bit error rate (BER) performance of mobile stations (MSs) near cell boundaries. To suppress such interference for half-duplex relay systems, the proposed scheme linearly combines received signals of the first and second phases at MS. Without channel state information (CSI) feedback, weight coefficients for the linear combining are estimated by the recursive least-squares (RLS) algorithm, which requires only information on preamble symbols of the target MS. Computer simulations of orthogonal frequency-division multiplexing (OFDM) transmission under two-cell and frequency selective fading conditions are conducted. It is demonstrated that the RLS-based linear combining with decision directed estimation is superior to the RLS-based linear combining using only the preamble and can outperform the minimum mean-squared error (MMSE) combining with estimated CSI when the number of preamble symbols is two and four that correspond to the minimum requirements for MMSE and RLS, respectively.

  • A 60 GHz Hybrid Analog/Digital Beamforming Receiver with Interference Suppression for Multiuser Gigabit/s Radio Access

    Koji TAKINAMI  Hiroyuki MOTOZUKA  Tomoya URUSHIHARA  Masashi KOBAYASHI  Hiroshi TAKAHASHI  Masataka IRIE  Takenori SAKAMOTO  Yohei MORISHITA  Kenji MIYANAGA  Takayuki TSUKIZAWA  Noriaki SAITO  Naganori SHIRAKATA  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E99-C No:7
      Page(s):
    856-865

    This paper presents a 60 GHz analog/digital beamforming receiver that effectively suppresses interference signals, targeting the IEEE 802.11ad/WiGig standard. Combining two-stream analog frontends with interference rejection digital signal processing, the analog beamforming steers the antenna beam to the desired direction while the digital beamforming provides gain suppression in the interference direction. A prototype has been built with 40 nm CMOS analog frontends as well as offline baseband digital signal processing. Measurements show a 3.1 dB EVM advantage over conventional two-stream diversity during a packet collision situation.

  • Free Space Optic and mmWave Communications: Technologies, Challenges and Applications Open Access

    Tawfik ISMAIL  Erich LEITGEB  Thomas PLANK  

     
    INVITED PAPER

      Vol:
    E99-B No:6
      Page(s):
    1243-1254

    Increasing demand in data-traffic has been addressed over the last few years. It is expected that the data-traffic will present the significant part of the total backbone traffic. Accordingly, much more transmission systems will be required to support this growth. A free space optic (FSO) communication is the greatest promising technology supporting high-speed and high-capacity transport networks. It can support multi Gbit/s for few kilometers transmission distance. The benefits of an FSO system are widespread, low cost, flexibility, immunity to electromagnetic field, fast deployment, security, etc. However, it suffers from some drawbacks, which limit the deployment of FSO links. The main drawback in FSO is the degradation in the signal quality because of atmospheric channel impairments. In addition, it is high sensitive for illumination noise coming from external sources such as sun and lighting systems. It is more benefit that FSO and mmWave are operating as a complementary solution that is known as hybrid FSO/mmWave links. Whereas the mmWave is susceptible to heavy rain conditions and oxygen absorption, while fog has no particular effect. This paper will help to better understand the FSO and mmWave technologies and applications operating under various atmospheric conditions. Furthermore, in order to improve the system performance and availability, several modulation schemes will be discussed. In addition to, the hybrid FSO/mmWave with different diversity combining techniques are presented.

  • Using Reversed Sequences and Grapheme Generation Rules to Extend the Feasibility of a Phoneme Transition Network-Based Grapheme-to-Phoneme Conversion

    Seng KHEANG  Kouichi KATSURADA  Yurie IRIBE  Tsuneo NITTA  

     
    PAPER-Speech and Hearing

      Pubricized:
    2016/01/06
      Vol:
    E99-D No:4
      Page(s):
    1182-1192

    The automatic transcription of out-of-vocabulary words into their corresponding phoneme strings has been widely adopted for speech synthesis and spoken-term detection systems. By combining various methods in order to meet the challenges of grapheme-to-phoneme (G2P) conversion, this paper proposes a phoneme transition network (PTN)-based architecture for G2P conversion. The proposed method first builds a confusion network using multiple phoneme-sequence hypotheses generated from several G2P methods. It then determines the best final-output phoneme from each block of phonemes in the generated network. Moreover, in order to extend the feasibility and improve the performance of the proposed PTN-based model, we introduce a novel use of right-to-left (reversed) grapheme-phoneme sequences along with grapheme-generation rules. Both techniques are helpful not only for minimizing the number of required methods or source models in the proposed architecture but also for increasing the number of phoneme-sequence hypotheses, without increasing the number of methods. Therefore, the techniques serve to minimize the risk from combining accurate and inaccurate methods that can readily decrease the performance of phoneme prediction. Evaluation results using various pronunciation dictionaries show that the proposed model, when trained using the reversed grapheme-phoneme sequences, often outperformed conventional left-to-right grapheme-phoneme sequences. In addition, the evaluation demonstrates that the proposed PTN-based method for G2P conversion is more accurate than all baseline approaches that were tested.

  • An Interference Rejection Combining Technique for an SFBC-OFDM System with Multiple Carrier Frequency Offsets

    Mina LEE  Rothna PEC  Kyu Seok KIM  Chang Hwan PARK  Yong Soo CHO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:2
      Page(s):
    481-487

    In this paper, an interference rejection combining (IRC) technique is proposed for SFBC-OFDM cellular systems that exhibit multiple carrier frequency offsets (CFOs). The IRC weight and the corresponding value for CFO compensation in the proposed technique are obtained by maximizing the post-SINR, i.e., minimizing both the interference signal and inter-channel interference (ICI) terms caused by multiple CFOs. The performance of the conventional IRC and proposed IRC techniques is evaluated by computer simulation for an SFBC-OFDM cellular system with multiple CFOs.

  • Indoor Channel Characterization and Performance Evaluation with Directional Antenna and Multiple Beam Combining

    Xiaoya ZUO  Ding WANG  Rugui YAO  Guomei ZHANG  

     
    PAPER-Antennas and Propagation

      Vol:
    E99-B No:1
      Page(s):
    104-114

    Ultra-wideband (UWB) beamforming is now attracting significant research attention for attaining spatial gain from array antennas. It is commonly believed that directional antenna based communication could improve the system performance. In order to further make clear the relationship between system performance and the antenna array beamforming, UWB indoor channels are extracted from practical measurements and circular horn antenna is used to characterize the channel properties and to evaluate the system performance. Using a single beam directional antenna with a certain half power beamwidth (HPBW), the channel capacity and the bit-error-rate (BER) performance of a UWB RAKE receiver are evaluated. In the line-of-sight (LOS) environments, the channel capacity and BER performance are improved with the beamwidth becoming smaller. However in the non-line-of-sight (NLOS) environments, the capacity and BER performance are not always better with directional antennas. And the variation trend between the system performance and the antenna beamwidth disappears. This is mainly because that there exist no dominant strong path components like those seen in LOS environments. Then beam combining is introduced to further improve the system performance. Simulation results show that the channel capacity and BER performance cloud be greatly improved by multiple beam combining, especially for the NLOS environments. This reminds us that when antenna beamforming is used to obtain array gain, the beamwidth should be carefully designed and beam combining is necessary to obtain optimal performance, especially in NLOS environments.

  • Interference Reduction Characteristics by Circular Array Based Massive MIMO in a Real Microcell Environment

    Ryochi KATAOKA  Kentaro NISHIMORI  Ngochao TRAN  Tetsuro IMAI  Hideo MAKINO  

     
    PAPER

      Vol:
    E98-B No:8
      Page(s):
    1447-1455

    The concept of massive multiple input multiple output (MIMO) has recently been proposed. It has been reported that using linear or planar arrays to implement massive MIMO yields narrow beams that can mitigate the interference signal even if interference cancellation techniques such as zero forcing (ZF) are not employed. In this work, we investigate the interference reduction performance achieved by circular array implemented massive MIMO in a real micro cell environment. The channel state information (CSI) is obtained by using a wideband channel sounder with cylindrical 96-element array in the 2-GHz band in an urban area. Circular arrays have much larger beamwidth and sidelobe level than linear arrays. In this paper, when considering the cylindrical array, the interference reduction performance between ZF and maximum ratio combining is compared when one desired user exists in the micro cell while the interference user moves around the adjacent cell. We show that ZF is essential for reducing the interference from the adjacent cell in the circular array based massive MIMO. The required number of antennas in the vertical and horizontal planes for the interference reduction is evaluated, in order to simplify the burden of signal processing for the ZF algorithm in massive MIMO. Because there are elements with low signal to noise power ratio (SNR) when considering cylindrical 96-element array, it is shown that the degradation of the signal to noise plus interference power ratio (SINR) when the number of antennas is reduced is smaller than that by ideal antenna gain reduction with a linear array. Moreover, we show that the appropriate antennas should be selected when a limited number of antennas is assumed, because the dominant waves arrive from certain specific directions.

  • Threshold-Based I-Q Diversity Combining Scheme for UHF RFID Readers and Its Performance

    Sung Sik NAM  Jeong Woo CHOI  Sung Ho CHO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E98-B No:8
      Page(s):
    1630-1639

    In this paper, a threshold-based I-Q diversity combining scheme for ultra-high frequency (UHF) radio frequency identification (RFID) readers with a quadrature receiver is proposed in the aspect of improving the tag detection performance. In addition, the performance of the proposed scheme is evaluated as the closed-form expressions. In particular, its statistical characteristics are detailed and its performance is compared to that of conventional schemes over independent and identically distributed Rician fading conditions in terms of average signal-to-noise ratio (SNR), bit error rate (BER), and the average number of required combining process. Numerical results indicate that the proposed scheme enables processing power control through threshold control while meeting the required quality of service compared to conventional schemes.

  • Precise BER Analysis of Repetition Coded OFDM Systems over Time- and Frequency-Selective Rayleigh Fading Channels

    Fumihito SASAMORI  Satoru ASADA  Osamu TAKYU  Shiro HANDA  

     
    PAPER

      Vol:
    E98-B No:1
      Page(s):
    88-98

    Orthogonal frequency division multiplexing (OFDM) has great advantages of high spectrum efficiency and robustness against multipath fading. When the received signal is deeply suppressed by deep fading, path loss and shadowing, the received carrier power must be increased in order to avoid degrading communication quality and provide high reliability at the cost of lower system throughput. A repetition coding is very attractive in providing the high reliability with simple configuration and the low decoding complexity of maximal ratio combining. In order to analytically confirm the effectiveness of repetition coded OFDM systems, we theoretically analyze the effect of increasing the number of repetitions (diversity branches) and acquiring both time and frequency diversity gain, and then derive a closed-form equation of average bit error rate (BER) to easily but precisely evaluate the performance.

  • Coherent Combining-Based Initial Ranging Scheme for MIMO-OFDMA Systems

    Yujie XIA  Guangliang REN  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:10
      Page(s):
    2203-2211

    A coherent combining-based initial ranging scheme is proposed for multiple-input multiple-output and orthogonal frequency division multiple access systems. The proposed algorithm utilizes the correlation properties of the ranging codes to resolve the multipath components, coherently combines the initial ranging signal of resolved path on each receiving antenna to maximize the output signal-to-interference-and-noise ratio, and then collects the power of the multipath signals to detect the states of the ranging codes. Simulation results show that the proposed scheme has much better performance than the available noncoherent combining method, and can accommodate more active ranging users simultaneously in each cell.

1-20hit(156hit)