The search functionality is under construction.

Keyword Search Result

[Keyword] components(43hit)

1-20hit(43hit)

  • Uniaxially Symmetrical T-Junction OMT with 45° -Tilted Branch Waveguide Ports

    Hidenori YUKAWA  Yu USHIJIMA  Toru TAKAHASHI  Toru FUKASAWA  Yoshio INASAWA  Naofumi YONEDA  Moriyasu MIYAZAKI  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2023/10/13
      Vol:
    E107-C No:3
      Page(s):
    57-65

    A T-junction orthomode transducer (OMT) is a waveguide component that separates two orthogonal linear polarizations in the same frequency band. It has a common circular waveguide short-circuited at one end and two branch rectangular waveguides arranged in opposite directions near the short circuit. One of the advantages of a T-junction OMT is its short axial length. However, the two rectangular ports, which need to be orthogonal, have different levels of performance because of asymmetry. We therefore propose a uniaxially symmetrical T-junction OMT, which is configured such that the two branch waveguides are tilted 45° to the short circuit. The uniaxially symmetrical configuration enables same levels of performance for the two ports, and its impedance matching is easier compared to that for the conventional configuration. The polarization separation principle can be explained using the principles of orthomode junction (OMJ) and turnstile OMT. Based on calculations, the proposed configuration demonstrated a return loss of 25dB, XPD of 30dB, isolation of 21dB between the two branch ports, and loss of 0.25dB, with a bandwidth of 15% in the K band. The OMT was then fabricated as a single piece via 3D printing and evaluated against the calculated performance indices.

  • Spatial Mode-Multiplexed Light Source Using Angularly-Multiplexed Volume Holograms

    Satoshi SHINADA  Yuta GOTO  Hideaki FURUKAWA  

     
    PAPER

      Pubricized:
    2023/06/30
      Vol:
    E106-C No:11
      Page(s):
    765-773

    We propose a novel mode-multiplexed light source using angularly-multiplexed volume holograms. Mode division multiplexing beams can be generated from a simple transmitter that is made of a laser array, single lens, and volume holograms. Hologram media has low recording sensitivity; hence, using holograms in the communication band is difficult. However, a dual wavelength method that uses different wavelengths for recording and reading holograms can realize the volume holograms for the infrared region. The volume holograms for three spatial mode multiplexing are formed using a compact Michelson interferometer type recording setup; simultaneous generations of three modes were demonstrated using a fiber array or vertical cavity surface emitting laser array with the volume holograms. A low loss coupling of three modes to few-mode-fiber can be achieved through the precise design and recording of volume holograms. The simple and low-cost mode-multiplexed light source using the volume holograms has the potential to broaden the application of MDM.

  • An Interpretation Method on Amplitude Intensities for Response Waveforms of Backward Transient Scattered Field Components by a 2-D Coated Metal Cylinder

    Keiji GOTO  Toru KAWANO  

     
    PAPER

      Pubricized:
    2022/09/29
      Vol:
    E106-C No:4
      Page(s):
    118-126

    In this paper, we propose an interpretation method on amplitude intensities for response waveforms of backward transient scattered field components for both E- and H-polarizations by a 2-D coated metal cylinder. A time-domain (TD) asymptotic solution, which is referred to as a TD Fourier transform method (TD-FTM), is derived by applying the FTM to a backward transient scattered field expressed by an integral form. The TD-FTM is represented by a combination of a direct geometric optical ray (DGO) and a reflected GO (RGO) series. We use the TD-FTM to derive amplitude intensity ratios (AIRs) between adjacent backward transient scattered field components. By comparing the numerical values of the AIRs with those of the influence factors that compose the AIRs, major factor(s) can be identified, thereby allowing detailed interpretation method on the amplitude intensities for the response waveforms of backward transient scattered field components. The accuracy and practicality of the TD-FTM are evaluated by comparing it with three reference solutions. The effectiveness of an interpretation method on the amplitude intensities for response waveforms of backward transient scattered field components is revealed by identifying major factor(s) affecting the amplitude intensities.

  • Interpretation Method of Inversion Phenomena on Backward Transient Scattered Field Components by a Coated Metal Cylinder

    Toru KAWANO  Keiji GOTO  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2022/02/24
      Vol:
    E105-C No:9
      Page(s):
    389-397

    An interpretation method of inversion phenomena is newly proposed for backward transient scattered field components for both E- and H-polarizations when an ultra-wideband (UWB) pulse wave radiated from a line source is incident on a two-dimensional metal cylinder covered with a lossless dielectric medium layer (coated metal cylinder). A time-domain (TD) asymptotic solution, which is referred to as a TD saddle point technique (TD-SPT), is derived by applying the SPT in evaluating a backward transient scattered field which is expressed by an integral form. The TD-SPT is represented by a combination of a direct geometric optical ray (DGO) and a reflected GO (RGO) series, thereby being able to extract and calculate any backward transient scattered field component from a response waveform. The TD-SPT is useful in understanding the response waveform of a backward transient scattered field by a coated metal cylinder because it can give us the peak value and arrival time of any field component, namely DGO and RGO components, and interpret analytically inversion phenomenon of any field component. The accuracy, validity, and practicality of the TD-SPT are clarified by comparing it with two kinds of reference solutions.

  • Number of Failed Components in Consecutive-k-out-of-n:G Systems and Their Applications in Optimization Problems

    Lei ZHOU  Hisashi YAMAMOTO  

     
    PAPER-Reliability, Maintainability and Safety Analysis

      Pubricized:
    2021/12/16
      Vol:
    E105-A No:6
      Page(s):
    943-951

    In this paper, we study the number of failed components in a consecutive-k-out-of-n:G system. The distributions and expected values of the number of failed components when system is failed or working at a particular time t are evaluated. We also apply them to the optimization problems concerned with the optimal number of components and the optimal replacement time. Finally, we present the illustrative examples for the expected number of failed components and give the numerical results for the optimization problems.

  • Optimization Problems for Consecutive-k-out-of-n:G Systems

    Lei ZHOU  Hisashi YAMAMOTO  Taishin NAKAMURA  Xiao XIAO  

     
    PAPER-Reliability, Maintainability and Safety Analysis

      Vol:
    E103-A No:5
      Page(s):
    741-748

    A consecutive-k-out-of-n:G system consists of n components which are arranged in a line and the system works if and only if at least k consecutive components work. This paper discusses the optimization problems for a consecutive-k-out-of-n:G system. We first focus on the optimal number of components at the system design phase. Then, we focus on the optimal replacement time at the system operation phase by considering a preventive replacement, which the system is replaced at the planned time or the time of system failure which occurs first. The expected cost rates of two optimization problems are considered as objective functions to be minimized. Finally, we give study cases for the proposed optimization problems and evaluate the feasibility of the policies.

  • Characterizing Link-2 LR-Visibility Polygons and Related Problems

    Xuehou TAN  Bo JIANG  

     
    PAPER-Algorithms and Data Structures

      Vol:
    E102-A No:2
      Page(s):
    423-429

    Two points x, y inside a simple polygon P are said to be mutually link-2 visible if there exists the third point z ∈ P such that z is visible from both x and y. The polygon P is link-2 LR-visible if there are two points s, t on the boundary of P such that every point on the clockwise boundary of P from s to t is link-2 visible from some point of the other boundary of P from t to s and vice versa. We give a characterization of link-2 LR-visibility polygons by generalizing the known result on LR-visibility polygons. A new idea is to extend the concepts of ray-shootings and components to those under notion of link-2 visibility. Then, we develop an O(n log n) time algorithm to determine whether a given polygon is link-2 LR-visible. Using the characterization of link-2 LR-visibility polygons, we further present an O(n log n) time algorithm for determining whether a polygonal region is searchable by a k-searcher, k ≥ 2. This improves upon the previous O(n2) time bound [9]. A polygonal region P is said to be searchable by a searcher if the searcher can detect (or see) an unpredictable intruder inside the region, no matter how fast the intruder moves. A k-searcher holds k flashlights and can see only along the rays of the flashlights emanating from his position.

  • Using Hierarchical Scenarios to Predict the Reliability of Component-Based Software

    Chunyan HOU  Jinsong WANG  Chen CHEN  

     
    PAPER-Software Engineering

      Pubricized:
    2017/11/07
      Vol:
    E101-D No:2
      Page(s):
    405-414

    System scenarios that derived from system design specification play an important role in the reliability engineering of component-based software systems. Several scenario-based approaches have been proposed to predict the reliability of a system at the design time, most of them adopt flat construction of scenarios, which doesn't conform to software design specifications and is subject to introduce state space explosion problem in the large systems. This paper identifies various challenges related to scenario modeling at the early design stages based on software architecture specification. A novel scenario-based reliability modeling and prediction approach is introduced. The approach adopts hierarchical scenario specification to model software reliability to avoid state space explosion and reduce computational complexity. Finally, the evaluation experiment shows the potential of the approach.

  • A New Algorithm for Reducing Components of a Gaussian Mixture Model

    Naoya YOKOYAMA  Daiki AZUMA  Shuji TSUKIYAMA  Masahiro FUKUI  

     
    PAPER

      Vol:
    E99-A No:12
      Page(s):
    2425-2434

    In statistical methods, such as statistical static timing analysis, Gaussian mixture model (GMM) is a useful tool for representing a non-Gaussian distribution and handling correlation easily. In order to repeat various statistical operations such as summation and maximum for GMMs efficiently, the number of components should be restricted around two. In this paper, we propose a method for reducing the number of components of a given GMM to two (2-GMM). Moreover, since the distribution of each component is represented often by a linear combination of some explanatory variables, we propose a method to compute the covariance between each explanatory variable and the obtained 2-GMM, that is, the sensitivity of 2-GMM to each explanatory variable. In order to evaluate the performance of the proposed methods, we show some experimental results. The proposed methods minimize the normalized integral square error of probability density function of 2-GMM by the sacrifice of the accuracy of sensitivities of 2-GMM.

  • Constrained Weighted Least Square Filter for Chrominance Recovery of High Resolution Compressed Image

    Takamichi MIYATA  Tomonobu YOSHINO  Sei NAITO  

     
    PAPER

      Vol:
    E98-A No:8
      Page(s):
    1718-1726

    Ultra high definition (UHD) imaging systems have attracted much attention as a next generation television (TV) broadcasting service and video streaming service. However, the state of the art video coding standards including H.265/HEVC has not enough compression rate for streaming, broadcasting and storing UHD. Existing coding standard such as H.265/HEVC normaly use RGB-YCbCr color transform before compressing RGB color image since that procedure can decorrelate color components well. However, there is room for improvement on the coding efficiency for color image based on an observation that the luminance and chrominance components changes in same locations. This observation inspired us to propose a new post-processing method for compressed images by using weighted least square (WLS) filter with coded luminance component as a guide image, for refining the edges of chrominance components. Since the computational cost of WLS tends to superlinearly increase with increasing image size, it is difficult to apply it to UHD images. To overcome this problem, we propose slightly overlapped block partitioning and a new variant of WLS (constrained WLS, CWLS). Experimental results of objective quality comparison and subjective assessment test using 4K images show that our proposed method can outperform the conventional method and reduce the bit amount for chrominance component drastically with preserving the subjective quality.

  • Parallel Ring-Line Rat-Race Circuit with Very Loose Coupling Utilizing Composite Right-/Left-Handed Transmission Lines

    Tadashi KAWAI  Yuma SUMITOMO  Akira ENOKIHARA  Isao OHTA  Kei SATOH  Yasunori SUZUKI  Hiroshi OKAZAKI  Shoichi NARAHASHI  

     
    PAPER

      Vol:
    E97-C No:10
      Page(s):
    965-971

    In this paper, we consider a parallel ring-line rat-race circuit realized by replacing some parts of the ring-lines with composite right-/left-handed transmission lines (CRLH-TLs). For a conventional rat-race circuit, the minimum coupling factor is limited by the highest impedance of the ring-lines that can be manufactured by general printed circuit board (PCB) technologies. However, the coupling factor of the parallel ring-line type rat-race circuit proposed in this paper is determined by the difference between the admittances of the parallel ring-lines. As a result of designing parallel ring-line rat-race circuits having coupling factors of $-20$ and $-30$,dB for an operation frequency of 4,GHz, the proposed rat-race circuit realizes broadband characteristics of about 35.5% according to the numerical results for the $-20$,dB circuit. Furthermore, broadband characteristics including reflection, isolation, and couplings can be maintained for the fabricated $-20$,dB rat-race circuit up to an input power of 40,dBm.

  • CompSize: A Model-Based and Automated Approach to Size Estimation of Embedded Software Components

    Kenneth LIND  Rogardt HELDAL  

     
    PAPER

      Vol:
    E95-D No:9
      Page(s):
    2183-2192

    Accurate estimation of Software Code Size is important for developing cost-efficient embedded systems. The Code Size affects the amount of system resources needed, like ROM and RAM memory, and processing capacity. In our previous work, we have estimated the Code Size based on CFP (COSMIC Function Points) within 15% accuracy, with the purpose of deciding how much ROM memory to fit into products with high cost pressure. Our manual CFP measurement process would require 2.5 man years to estimate the ROM size required in a typical car. In this paper, we want to investigate how the manual effort involved in estimation of Code Size can be minimized. We define a UML Profile capturing all information needed for estimation of Code Size, and develop a tool for automated estimation of Code Size based on CFP. A case study will show how UML models save manual effort in a realistic case.

  • Acoustic Distance Measurement Method Based on Phase Interference Using Calibration and Whitening Processing in Real Environments

    Masato NAKAYAMA  Shimpei HANABUSA  Tetsuji UEBO  Noboru NAKASAKO  

     
    PAPER-Engineering Acoustics

      Vol:
    E94-A No:8
      Page(s):
    1638-1646

    Distance to target is fundamental and very important information in numerous engineering fields. Many distance measurement methods using sound use the time delay of a reflected wave, which is measured in reference to the transmitted wave. This method, however, cannot measure short distances because the transmitted wave, which has not attenuated sufficiently by the time the reflected waves are received, suppresses the reflected waves for short distances. Therefore, we proposed an acoustic distance measurement method based on the interference between the transmitted wave and the reflected waves, which can measure distance in a short range. The proposed method requires a cancellation processing for background components due to the spectrum of the transmitted wave and the transfer function of the measurement system in real environments. We refer to this processing as background components cancellation processing (BGCCP). We proposed BGCCP based on subtraction or whitening. However, the proposed method had a limitation with respect to the transmitted wave or additive noise in real environments. In the present paper, we propose an acoustic distance measurement method based on the new BGCCP. In the new BGCCP, we use the calibration of a real measurement system and the whitening processing of the transmitted wave and introduce the concept of the cepstrum to the proposed method in order to achieve robustness. Although the conventional BGCCP requires the recording of the transmitted wave under the condition without targets, the new BGCCP does not have this requirement. Finally, we confirmed the effectiveness of the proposed method through experiments in real environments. As a result, the proposed method was confirmed to be valid and effective, even in noisy environments.

  • Design of a Broadband Cruciform Substrate Integrated Waveguide Coupler

    Mitsuyoshi KISHIHARA  Isao OHTA  Kensuke OKUBO  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E94-C No:2
      Page(s):
    248-250

    A broadband cruciform substrate integrated waveguide coupler is designed based on the planar circuit approach. The broadband property is obtained by widening the crossed region in the same way as rectangular waveguide cruciform couplers. As a result, a 3 dB coupler with fractional bandwidth of 30% is realized at 24 GHz.

  • Harmonic Components Based Post-Filter Design for Residual Echo Suppression

    Minwoo LEE  Yoonjae LEE  Kihyeon KIM  Hanseok KO  

     
    LETTER-Digital Signal Processing

      Vol:
    E93-A No:1
      Page(s):
    320-323

    In this Letter, a residual acoustic echo suppression method is proposed to enhance the speech quality of hands-free communication in an automobile environment. The echo signal is normally a human voice with harmonic characteristics in a hands-free communication environment. The proposed algorithm estimates the residual echo signal by emphasizing its harmonic components. The estimated residual echo is used to obtain the signal-to-interference ratio (SIR) information at the acoustic echo canceller output. Then, the SIR based Wiener post-filter is constructed to reduce both the residual echo and noise. The experimental results confirm that the proposed algorithm is superior to the conventional residual echo suppression algorithm in terms of the echo return loss enhancement (ERLE) and the segmental signal-to-noise ratio (SEGSNR).

  • SIW-Like Guided Wave Structures and Applications Open Access

    Wei HONG  Ke WU  Hongjun TANG  Jixin CHEN  Peng CHEN  Yujian CHENG  Junfeng XU  

     
    INVITED PAPER

      Vol:
    E92-C No:9
      Page(s):
    1111-1123

    In this paper, the research advances in SIW-like (Substrate Integrated Waveguide-like) guided wave structures and their applications in the State Key Laboratory of Millimeter Waves of China is reviewed. Our work is concerned with the investigations on the propagation characteristics of SIW, half-mode SIW (HMSIW) and the folded HMSIW (FHMSIW) as well as their applications in microwave and millimeter wave filters, diplexers, directional couplers, power dividers, antennas, power combiners, phase shifters and mixers etc. Selected results are presented to show the interesting features and advantages of those new techniques.

  • Dual-Band Wilkinson Power Dividers Using a Series RLC Circuit

    Tadashi KAWAI  Yasuaki NAKASHIMA  Yoshihiro KOKUBO  Isao OHTA  

     
    PAPER

      Vol:
    E91-C No:11
      Page(s):
    1793-1797

    This paper describes a novel Wilkinson power divider operating at two arbitrary different frequencies. The proposed divider consists of two-section transmission lines and a series RLC circuit connected between two output ports. The circuit parameters for a dual-band operation are derived by the even/odd mode analysis. Equal power split, complete matching, and good isolation between two output ports are numerically demonstrated. Dual-band and broadband Wilkinson power dividers can be successfully designed. Finally, verification of this design method is also shown by electromagnetic simulations and experiments.

  • Enhanced Vertical Perception through Head-Related Impulse Response Customization Based on Pinna Response Tuning in the Median Plane

    Ki Hoon SHIN  Youngjin PARK  

     
    PAPER-Engineering Acoustics

      Vol:
    E91-A No:1
      Page(s):
    345-356

    Human's ability to perceive elevation of a sound and distinguish whether a sound is coming from the front or rear strongly depends on the monaural spectral features of the pinnae. In order to realize an effective virtual auditory display by HRTF (head-related transfer function) customization, the pinna responses were isolated from the median HRIRs (head-related impulse responses) of 45 individual HRIRs in the CIPIC HRTF database and modeled as linear combinations of 4 or 5 basic temporal shapes (basis functions) per each elevation on the median plane by PCA (principal components analysis) in the time domain. By tuning the weight of each basis function computed for a specific height to replace the pinna response in the KEMAR HRIR at the same height with the resulting customized pinna response and listening to the filtered stimuli over headphones, 4 individuals with normal hearing sensitivity were able to create a set of HRIRs that outperformed the KEMAR HRIRs in producing vertical effects with reduced front/back ambiguity in the median plane. Since the monaural spectral features of the pinnae are almost independent of azimuthal variation of the source direction, similar vertical effects could also be generated at different azimuthal directions simply by varying the ITD (interaural time difference) according to the direction as well as the size of each individual's own head.

  • NRD-Guide Passive Components and Devices for Millimeter Wave Wireless Applications

    Tsukasa YONEYAMA  Hirokazu SAWADA  Takashi SHIMIZU  

     
    INVITED PAPER

      Vol:
    E90-C No:12
      Page(s):
    2170-2177

    Owing to simple structure, low cost and high performance, NRD-guide millimeter wave circuits have attracted much attention in recent years. In this paper, a variety of NRD-guide passive components are reviewed with emphasis on design techniques and performance estimation in the 60 GHz frequency band where the license-free advantage is available. The passive components to be discussed here include compact bends, wideband hybrid couplers, practical three-port junctions, versatile E-plane filters, and effective feeding structures for lens antennas. Some of them are employed to construct millimeter wave transceivers. Eye patterns observed at 1.5 Gbps confirm the potential ability of the fabricated NRD-guide transceivers for high bit-rate, wireless applications.

  • Particle Swarms for Feature Extraction of Hyperspectral Data

    Sildomar Takahashi MONTEIRO  Yukio KOSUGI  

     
    PAPER-Pattern Recognition

      Vol:
    E90-D No:7
      Page(s):
    1038-1046

    This paper presents a novel feature extraction algorithm based on particle swarms for processing hyperspectral imagery data. Particle swarm optimization, originally developed for global optimization over continuous spaces, is extended to deal with the problem of feature extraction. A formulation utilizing two swarms of particles was developed to optimize simultaneously a desired performance criterion and the number of selected features. Candidate feature sets were evaluated on a regression problem. Artificial neural networks were trained to construct linear and nonlinear models of chemical concentration of glucose in soybean crops. Experimental results utilizing real-world hyperspectral datasets demonstrate the viability of the method. The particle swarms-based approach presented superior performance in comparison with conventional feature extraction methods, on both linear and nonlinear models.

1-20hit(43hit)