The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] coupling capacitance(9hit)

1-9hit
  • Characterization of Multi-Layer Ceramic Chip Capacitors up to mm-Wave Frequencies for High-Speed Digital Signal Coupling Open Access

    Tsugumichi SHIBATA  Yoshito KATO  

     
    PAPER

      Pubricized:
    2020/04/09
      Vol:
    E103-C No:11
      Page(s):
    575-581

    Capacitive coupling of line coded and DC-balanced digital signals is often used to eliminate steady bias current flow between the systems or components in various communication systems. A multi-layer ceramic chip capacitor is promising for the capacitor of very broadband signal coupling because of its high frequency characteristics expected from the downsizing of the chip recent years. The lower limit of the coupling bandwidth is determined by the capacitance while the higher limit is affected by the parasitic inductance associated with the chip structure. In this paper, we investigate the coupling characteristics up to millimeter wave frequencies by the measurement and simulations. A phenomenon has been found in which the change in the current distribution in the chip structure occur at high frequencies and the coupling characteristics are improved compared to the prediction based on the conventional equivalent circuit model. A new equivalent circuit model of chip capacitor that can express the effect of the improvement has been proposed.

  • SAT-Based Test Generation for Open Faults Using Fault Excitation Caused by Effect of Adjacent Lines

    Jun YAMASHITA  Hiroyuki YOTSUYANAGI  Masaki HASHIZUME  Kozo KINOSHITA  

     
    PAPER-Logic Synthesis, Test and Verification

      Vol:
    E96-A No:12
      Page(s):
    2561-2567

    Open faults are difficult to test since the voltage at the floating line is unpredictable and depends on the voltage at the adjacent lines. The effect of open faults can be easily excited if a test pattern provides the opposite logic value to most of the adjacent lines. In this paper, we present a procedure to generate as high a quality test as possible. We define the test quality for evaluating the effect of adjacent lines by assigning an opposite logic value to the faulty line. In our proposed test generation method, we utilize the SAT-based ATPG method. We generate test patterns that propagate the faulty effect to primary outputs and assign logic values to adjacent lines opposite that of the faulty line. In order to estimate test quality for open faults, we define the excitation effectiveness Eeff. To reduce the test volume, we utilize the open fault simulation. We calculate the excitation effectiveness by open fault simulation in order to eliminate unnecessary test patterns. The experimental results for the benchmark circuits prove the effectiveness of our procedure.

  • Power Distribution Network Optimization for Timing Improvement with Statistical Noise Model and Timing Analysis

    Takashi ENAMI  Takashi SATO  Masanori HASHIMOTO  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E95-A No:12
      Page(s):
    2261-2271

    We propose an optimization method for power distribution network that explicitly deals with timing. We have found and focused on the facts that decoupling capacitance (decap) does not necessarily improve gate delay depending on the switching timing within a cycle and that power wire expansion may locally degrade the voltage. To resolve the above facts, we devised an efficient sensitivity calculation of timing to decap size and power wire width for guiding optimization. The proposed method, which is based on statistical noise modeling and timing analysis, accelerates sensitivity calculation with an approximation and adjoint sensitivity analysis. Experimental results show that decap allocation based on the sensitivity analysis efficiently minimizes the worst-case circuit delay within a given decap budget. Compared to the maximum decap placement, the delay improvement due to decap increases by 3.13% even while the total amount of decaps is reduced to 40%. The wire sizing with the proposed method also efficiently reduces required wire resource necessary to attain the same circuit delay by 11.5%.

  • Simple Analytical Formulas for Estimating IR-Drops in an Early Design Stage

    Kazuyuki OOYA  Yuji TAKASHIMA  Atsushi KUROKAWA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E93-A No:9
      Page(s):
    1585-1593

    In an early design stage of LSI designing, finding out the proper parameters for power planning is important from the viewpoint of cost minimization. In this paper, we present simple analytical formulas which are used to obtain the initial parameters close to the proper power distribution networks in the early design stage. The formulas for estimating static and pseudo-dynamic voltage drops (IR-drops) are derived by the response surface method (RSM). By making the formulas once, they can be used for the general power planning for the power-grid style in any process technology.

  • Boosted Bit Line Program Scheme for Low Operating Voltage MLC NAND Flash Memory

    Youngsun SONG  Ki-Tae PARK  Myounggon KANG  Yunheub SONG  Sungsoo LEE  Youngho LIM  Kang-Deog SUH  

     
    LETTER-Electronic Circuits

      Vol:
    E93-C No:3
      Page(s):
    423-425

    A boosted bit line program scheme is proposed for low operating voltage in the multi-level-cell (MLC) NAND flash memory. Our BL to BL boosting scheme, which uses the BL coupling capacitance, is applied to achieve a higher channel potential than is possible with Vcc, so that the Vpass window margin is improved by up to 59% in 40 nm MLC NAND flash memory with 2.7 V Vcc. In the case of 1.8 V Vcc, the margin of the proposed scheme is 12% higher than one of the conventional schemes at 2.7 V Vcc.

  • Design of a Dual-Band Chip Antenna Using a Gap-Fed Branch

    Hyengcheul CHOI  Hyeongdong KIM  

     
    LETTER-Antennas and Propagation

      Vol:
    E92-B No:8
      Page(s):
    2759-2761

    Dual-band chip antennas usually have a narrow bandwidth in the first resonance frequency band due to an inter-coupling capacitance. In order to analyze the effect of the inter-coupling capacitance, an equivalent circuit of an antenna with a branch radiator is considered in this paper. Based on the equivalent circuit model, it is found that the inter-coupling capacitance reduces impedance bandwidth. This paper proposes a gap feeding method to alleviate the effect of the inter-coupling capacitance and explains it using an equivalent circuit.

  • An Efficient Decoupling Capacitance Budgeting Methodology by Using Power-Capacitance Ratio

    Susumu KOBAYASHI  Naoshi DOI  

     
    PAPER

      Vol:
    E92-C No:4
      Page(s):
    492-499

    The high-speed and low-power system LSIs in recent years have crucial need for managing power supply noise so that it might not substantially affect the circuit functionality and performance. The decoupling capacitance is known as an effective measure for suppressing the power supply noise. In this paper, we propose a design methodology for decoupling capacitance budgeting, in which the decoupling capacitance is distributed appropriately over the LSI chip area in order to suppress the power supply noise of each local region. For efficient budgeting, we introduced a new concept of power-capacitance ratio, which is the ratio of power dissipation to capacitance. The proposed method first performs a simplified power supply noise analysis by using a lumped circuit model to determine the total required on-chip capacitance, and calculate the power-capacitance ratio. Then, in the layout design phase, the decoupling capacitance budgeting is performed by using the above power-capacitance ratio as a guideline. The effectiveness of the proposed method was verified by using SPICE simulations on example chip models of 90 nm technology node. The verification results show that, even for a chip with very wide on-chip variation in power density, the proposed method can suppress the power supply noise of each local region effectively.

  • Effects of On-Chip Inductance on Power Distribution Grid

    Atsushi MURAMATSU  Masanori HASHIMOTO  Hidetoshi ONODERA  

     
    LETTER

      Vol:
    E88-A No:12
      Page(s):
    3564-3572

    With increase of clock frequency, on-chip wire inductance starts to play an important role in power/ground distribution analysis, although it has not been considered so far. We perform a case study work that evaluates relation between decoupling capacitance position and noise suppression effect, and we reveal that placing decoupling capacitance close to current load is necessary for noise reduction. We experimentally show that impact of on-chip inductance becomes small when on-chip decoupling capacitance is well placed according to local power consumption. We also examine influences of grid pitch, wire area, and spacing between paired power and ground wires on power supply noise. When effect of on-chip inductance on power/ground noise is significant, minification of grid pitch is more efficient than increase in wire area, and small spacing reduces power noise as we expected.

  • A Study of Delay Time on Bit Lines in Megabit SRAM's

    Atsushi KINOSHITA  Shuji MURAKAMI  Yasumasa NISHIMURA  Kenji ANAMI  

     
    PAPER

      Vol:
    E75-C No:11
      Page(s):
    1383-1386

    This paper describes the delay time on bit lines due to coupling capacitance between adjacent bit lines in megabit SRAM's. The delay time on bit lines in several generations of megabit SRAM's is quantitatively analyzed using device and circuit simulations. It is shown that narrowing the bit-line swing from 200 mV to 30 mV for future 16-Mbit SRAM's will effectively reduce the difference in delay time from 1.0 ns to 0.3 ns, and that a two-block devided bit line will lower the difference in the delay-time ratio to 3% in case of 15-ns access time.