Feng WANG Xiangyu WEN Lisheng LI Yan WEN Shidong ZHANG Yang LIU
The rapid advancement of cloud-edge-end collaboration offers a feasible solution to realize low-delay and low-energy-consumption data processing for internet of things (IoT)-based smart distribution grid. The major concern of cloud-edge-end collaboration lies on resource management. However, the joint optimization of heterogeneous resources involves multiple timescales, and the optimization decisions of different timescales are intertwined. In addition, burst electromagnetic interference will affect the channel environment of the distribution grid, leading to inaccuracies in optimization decisions, which can result in negative influences such as slow convergence and strong fluctuations. Hence, we propose a cloud-edge-end collaborative multi-timescale multi-service resource management algorithm. Large-timescale device scheduling is optimized by sliding window pricing matching, which enables accurate matching estimation and effective conflict elimination. Small-timescale compression level selection and power control are jointly optimized by disturbance-robust upper confidence bound (UCB), which perceives the presence of electromagnetic interference and adjusts exploration tendency for convergence improvement. Simulation outcomes illustrate the excellent performance of the proposed algorithm.
Masatoshi YAITA Yosei SHIBATA Takahiro ISHINABE Hideo FUJIKAKE
In this paper, we proposed the phase disturbing device using randomly-fluctuated liquid crystal (LC) alignment to reduce the speckle noise generated in holographic displays. Some parameters corresponding to the alignment fluctuation of thick LC layer were quantitatively evaluated, and we clarified the effect of the LC alignment fluctuation with the parameters on speckle noise reduction.
Cyber-physical systems (CPSs) assisted by digital twins (DTs) integrate sensing-actuation loops over communication networks in various infrastructure services and applications. This study overviews the concept, methodology, and applications of the integrated communication quality estimation and control for the DT-assisted CPSs from both communications and control perspectives. The DT-assisted CPSs can be considered as networked control systems (NCSs) with virtual dynamic models of physical entities. A communication quality estimation observer (CQEO), which is an extended version of the communication disturbance observer (CDOB) utilized for time-delay compensation in NCSs, is proposed to estimate the integrated effects of the quality of services (QoS) and cyberattacks on the NCS applications. A path diversity technique with the CQEO is also proposed to achieve reliable NCSs. The proposed technique is applied to two kinds of NCSs: remote motor control and haptic communication systems. Moreover, results of the simulation on a haptic communication system show the effectiveness of the proposed approach. In the end, future research directions of the CQEO-based scheme are presented.
Toshio CHIYOJIMA Akihiro ODA Go ISHIWATA Kazuhiro TAKAYA Yasushi MATSUMOTO
A method of determining emission limits was studied by using the amplitude probability distribution (APD) for low-probability pulsed electromagnetic disturbances due to discharge. The features of this method are 1) without using the previously reported relationship between APD and bit error rate, the limits are derived using the measured impact of a pulsed disturbance on various wireless communication systems having different bandwidths, and 2) disturbances caused by discharge with poor reproducibility are simulated by regularly repeated pulse-modulated sine waves to enable stable evaluation of the communication quality. APD-based limits are determined from the pulse repetition frequency of the simulated disturbance such that the block error rate (BLER) is less than a certain limit in wireless systems that are most sensitive to the pulsed disturbance. In the international standard CISPR 32 regulating electromagnetic disturbance, radiated disturbance due to discharge is excluded from the application of peak detection limits because of its low occurrence probability. In this paper we quantitatively determine appropriate criteria of the probability for the exclusion. Using the method, we measured the impact of low-probability pulsed interference on major wireless systems and found that GSM and Wi-Fi systems were the most sensitive. New APD-based limits were derived on the basis of these findings. The APD-based limits determined by the proposed method enable a valid evaluation of low-occurrence-probability pulsed disturbances without unconditionally excluding the measurement.
Yan ZHANG Lei CHEN Xiaomei TANG Gang OU
Differential code biases (DCBs) are important parameters that must be estimated accurately for precise positioning and Satellite Based Augmentation Systems (SBAS) ionospheric related parameter generation. In this paper, in order to solve the performance degradation problem of the traditional minimum STD searching algorithm in disturbed ionosphere status and in geomagnetic low latitudes, we propose a linear planar based minimum STD searching algorithm. Firstly, we demonstrate the linear planar trend of the local vertical TEC and introduce the linear planar model based minimum standard variance searching method. Secondly, we validate the correctness of our proposed method through theoretical analysis and propose bias detection to avoid large estimation bias. At last, we show the performance of our proposed method under different geomagnetic latitudes, different seasons and different ionosphere status. The experimental results show that for the traditional minimum STD searching algorithm based on constant model, latitude difference is the key factor affecting the performance of DCB estimation. The DCB estimation performance in geomagnetic mid latitudes is the best, followed by the high latitudes and the worst is for the low latitudes. While the algorithm proposed in this paper can effectively solve the performance degradation problem of DCB estimation in geomagnetic low latitudes by using the linear planar model which is with a higher degree of freedom to model the local ionosphere characteristics and design dJ to screen the epochs. Through the analysis of the DCB estimation results of a large number of stations, it can be found that the probability of large estimation deviation of the traditional method will increase obviously under the disturb ionosphere conditions, but the algorithm we proposed can effectively control the amplitude of the maximum deviation and alleviate the probability of large estimation deviation in disturb ionosphere status.
In this paper, operator-based reset control for a class of nonlinear systems with unknown bounded disturbance is considered using right coprime factorization approach. In detail, firstly, for dealing with the unknown bounded disturbance of the nonlinear systems, operator-based reset control framework is proposed based on right coprime factorization. By the proposed framework, robust stability of the nonlinear systems with unknown bounded disturbance is guaranteed by using the proposed reset controller. Secondly, under the reset control framework, an optimal design scheme is discussed for minimizing the error norm based on the proposed operator-based reset controller. Finally, for conforming effectiveness of the proposed design scheme, a simulation example is given.
In this paper, robust stability of nonlinear feedback systems with unknown disturbance is considered by using the operator-based right coprime factorization method. For dealing with the unknown disturbance, a new design scheme and a nonlinear controller are given. That is, robust stability of the nonlinear systems with unknown disturbance is guaranteed by combining right coprime factorization with the proposed controller. Simultaneously, adverse effects resulting from the disturbance are removed by using the proposed nonlinear operator controller. Finally, a simulation example is given to show the effectiveness of the proposed design scheme of this paper.
A comprehensive model is presented for estimating the bit error rate (BER) of write disturbance in a resistive memory composed of a cross-point array. While writing a datum into the selected address, the non-selected addresses are biased by word-line (WL) and bit-line (BL). The stored datum in the non-selected addresses will be disturbed if the bias is large enough. It is necessary for the current flowing through the non-selected address to be calculated in order to estimate the BER of the write disturbance. Since it takes a long time to calculate the current flowing in a large-scale cross-point array, several simplified circuits have been utilized to decrease the calculating time. However, these simplified circuits are available to the selected address, not to the non-selected one. In this paper, new simplified circuits are proposed for calculating the current flowing through the non-selected address. The proposed and the conventional simplified circuits are used, and on that basis the trade-off between the write disturbance and the write error is discussed. Furthermore, the error correcting code (ECC) is introduced to improve the trade-off and to provide the low-cost memory chip matching current production lines.
An extended harmonic disturbance observer is designed for speed (or position) sensorless current control of DC motor subject to a biased sinusoidal disturbance and parameter uncertainties. The proposed method does not require the information on the mechanical part of the motor equation. Theoretical analysis via the singular perturbation theory is performed to verify that the feedforward compensation using the estimation can improve the robust transient performance of the closed-loop system. A stability condition is derived against parameter uncertainties. Comparative experimental results validate the robustness of the proposed method against the uncertainties.
A simplified circuit has been utilized for fast computation of the current flowing in the cross-point memory array. However, the circuit has a constraint in that the selected cell is located farthest from current drivers so as to estimate the current degraded by metal wire resistance. This is because the length of the current path along the metal wire varies with the selected address in the cross-point memory array. In this paper, a new simplified circuit is proposed for calculating the current at every address in order to take account of the metal wire resistance. By employing the Monte Carlo simulation to solve the proposed simplified circuit, the current distribution across the array is obtained, so that failure rates of read disturbance and write error are estimated precisely. By comparing the conventional and the proposed simplified circuits, it was found that the conventional simplified circuit estimated optimistic failure rates for read disturbance and for write error when the wire resistance was prominent enough as a parasitic resistance.
A simple robust finite-time convergent observer is presented in the presence of unknown input disturbance and measurement noise. In order to achieve the robust estimation and ensure the finite-time convergence, the proposed observer is constructed by using a multiple integral observer scheme in a hybrid system framework. Comparative computer simulations and laboratory experiments have been performed to test the effectiveness of the proposed observer.
Daesung JUNG Youngjun YOO Sangchul WON
This paper proposes an updating state dependent disturbance observer (USDDOB) to reject position dependent disturbances when parameters vary slowly, and input and output are time-delayed. To reject the effects of resultant slowly-varying position dependent disturbances, the USDDOB uses the control method of the state dependent disturbance observer (SDDOB) and time-invariance approximation. The USDDOB and a main proportional integral (PI) controller constitute a robust controller. Simulations and experiments using a 1-degree-of-freedom (1-DOF) tilted planar robot show the effectiveness of the proposed method.
Since the conventional cascade controller for electric motor drives requires accurate information about the system parameters and load conditions to achieve a desired performance, this paper presents a new practical control structure to improve the robust performance against parameter uncertainties. Two first-order disturbance observers (DOB) are incorporated with the cascade structure, to preserve the nominal performance. The analysis of the robust performance of the DOB is presented by using the singular perturbation theory. Simulation results suggest that the proposed controller can be used effectively as an additional compensator to the conventional cascade scheme.
Hiroaki MUKAIDANI Ryousei TANABATA Chihiro MATSUMOTO
In this paper, the H2/H∞ control problem for a class of stochastic discrete-time linear systems with state-, control-, and external-disturbance-dependent noise or (x, u, v)-dependent noise involving multiple decision makers is investigated. It is shown that the conditions for the existence of a strategy are given by the solvability of cross-coupled stochastic algebraic Riccati equations (CSAREs). Some algorithms for solving these equations are discussed. Moreover, weakly-coupled large-scale stochastic systems are considered as an important application, and some illustrative examples are provided to demonstrate the effectiveness of the proposed decision strategies.
Kensuke SAWADA Shigenobu SASAKI Shinichiro MORI
Geomagnetic information is informative because it has the ability to detect information about orientation by way of a ubiquitous device. However, a magnetic disturbance easily influences geomagnetic information. The magnetic disturbance detection method is needed in order to use geomagnetic information. Firstly, in this paper, the availability of geomagnetic information in Japan is investigated by field measurement work. Then, a new magnetic disturbance detection method which is better than the conventional method is proposed. The basic function of the proposed method is tested in actual condition.
Daesung JUNG Youngjun YOO Yujin JANG Sangchul WON
We propose a motor speed ripple elimination method using a state dependent disturbance observer (SDDOB). The SDDOB eliminates the state dependent disturbance in the system regardless of the operation frequency, input time delay and output time delay. The SDDOB and a main proportional integral (PI) controller constitute a robust motor speed controller. Experimental results show the effectiveness of the proposed method.
Chia-Pin WU Jeang-Lin CHANG Ching-Long SHIH
In this note, we introduce the integral term of system outputs into an output feedback controller for sampled-data linear systems with unknown disturbances. The proposed method does not use any observer and can prevent the high gain actions in control inputs. Provided the variation of the disturbance in the two consecutive sampling instances is not changed significantly, it is shown that system states and system outputs are finally constrained in small bounded regions, respectively. Simulation results support the theoretical developments.
Shusuke YOSHIMOTO Masaharu TERADA Shunsuke OKUMURA Toshikazu SUZUKI Shinji MIYANO Hiroshi KAWAGUCHI Masahiko YOSHIMOTO
This paper presents a novel disturb mitigation scheme which achieves low-energy operation for a deep sub-micron 8T SRAM macro. The classic write-back scheme with a dedicated read port overcame both half-select and read-disturb problems. Moreover, it improved the yield, particularly in the low-voltage range. The conventional scheme, however, consumed more power because of charging and discharging all write bitlines in a sub-block. Our proposed scheme reduces the power overhead of the write-back scheme using a floating write bitline technique and a low-swing bitline driver (LSBD). The floating bitline and the LSBD respectively consist of a precharge-less CMOS equalizer (transmission gate) and an nMOS write-back driver. The voltage on the floating write bitline is at an intermediate voltage between the ground and the supply voltage before a write cycle. The write target cells are written by normal CMOS drivers, whereas the write bitlines in half-selected columns are driven by the LSBDs in the write cycle, which suppresses the write bitline voltage to VDD - Vtn and therefore saves the active power in the half-selected columns (where Vtn is a threshold voltage of an nMOS). In addition, the proposed scheme reduces a leakage current from the write bitline because of the floating write bitline. The active leakage is reduced by 33% at the FF corner, 125. The active energy in the write operation is reduced by 37% at the FF corner. In other process corners, more writing power reduction can be expected because it depends on the Vtn in the LSBD. We fabricated a 512-Kb 8T SRAM test chip that operates at a single 0.5-V supply voltage. The test chip with the proposed scheme respectively achieves 1.52-µW/MHz writing energy and 72.8-µW leakage power, which are 59.4% and 26.0% better than those of the conventional write-back scheme. The total energy is 12.9 µW/MHz (12.9 pJ/access) at a supply voltage of 0.5 V and operating frequency of 6.25 MHz in a 50%-read/50%-write operation.
Kousuke MIYAJI Kentaro HONDA Shuhei TANAKAMARU Shinji MIYANO Ken TAKEUCHI
Three types of electron injection scheme: both side injection scheme and self-repair one side injection scheme Type A (injection for once) and Type B (injection for twice) are proposed and analyzed comprehensively for 65 nm technology node 6T- and 8T-SRAM cells to find the optimum injection scheme and cell architecture. It is found that the read speed degrades by as much as 6.3 times in the 6T-SRAM with the local injected electrons. However, the read speed of the 8T-SRAM cell does not degrade because the read port is separated from the write pass gate transistors. Furthermore, the self-repair one side injection scheme is most suitable to solve the conflict of the half select disturb and write characteristics. The worst cell characteristics of Type A and Type B self-repair one side injection schemes were found to be the same. In the self-repair one side injection 8T-SRAM, the disturb margin increases by 141% without write margin or read speed degradation. The proposed schemes have no process or area penalty compared with the standard CMOS-process.
Jong-Oh PARK Shi-Hwan OH Ki-Lyuk YONG Young-Do IM
Actuator-induced disturbances are among the most crucial factors in correct spacecraft attitude pointing and stability for fine attitude control problems. In order to develop a CMG as an actuator for fine controls, CMG-induced disturbances should be analyzed. Therefore, this paper aims to develop an analytic model that predicts the effect of disturbances to CMGs by assuming static and dynamic imbalances. The proposed analytical model with respect to the disturbances of a CMG is derived using the Lagrange energy method based on the small-signal assumption.