The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] emitter(36hit)

1-20hit(36hit)

  • Enhanced Radar Emitter Recognition with Virtual Adversarial Training: A Semi-Supervised Framework Open Access

    Ziqin FENG  Hong WAN  Guan GUI  

     
    PAPER-Neural Networks and Bioengineering

      Pubricized:
    2024/05/15
      Vol:
    E107-A No:9
      Page(s):
    1534-1541

    Radar emitter identification (REI) is a crucial function of electronic radar warfare support systems. The challenge emphasizes identifying and locating unique transmitters, avoiding potential threats, and preparing countermeasures. Due to the remarkable effectiveness of deep learning (DL) in uncovering latent features within data and performing classifications, deep neural networks (DNNs) have seen widespread application in radar emitter identification (REI). In many real-world scenarios, obtaining a large number of annotated radar transmitter samples for training identification models is essential yet challenging. Given the issues of insufficient labeled datasets and abundant unlabeled training datasets, we propose a novel REI method based on a semi-supervised learning (SSL) framework with virtual adversarial training (VAT). Specifically, two objective functions are designed to extract the semantic features of radar signals: computing cross-entropy loss for labeled samples and virtual adversarial training loss for all samples. Additionally, a pseudo-labeling approach is employed for unlabeled samples. The proposed VAT-based SS-REI method is evaluated on a radar dataset. Simulation results indicate that the proposed VAT-based SS-REI method outperforms the latest SS-REI method in recognition performance.

  • Emitter Tracking via Direct Target Motion Analysis

    Yiqi CHEN  Ping WEI  Gaiyou LI  Huaguo ZHANG  Hongshu LIAO  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2022/06/08
      Vol:
    E105-A No:12
      Page(s):
    1522-1536

    This paper considers tracking of a non-cooperative emitter based on a single sensor. To this end, the direct target motion analysis (DTMA) approach, where the target state is straightforwardly achieved from the received signal, is exploited. In order to achieve observability, the sensor has to perform a maneuver relative to the emitter. By suitably building an approximated likelihood function, the unscented Kalman filter (UKF), which is able to work under high nonlinearity of the measurement model, is adopted to recursively estimate the target state. Besides, the posterior Cramér-Rao bound (PCRB) of DTMA, which can be used as performance benchmark, is also achieved. The effectiveness of proposed method is verified via simulation experiments.

  • Radar Emitter Identification Based on Auto-Correlation Function and Bispectrum via Convolutional Neural Network

    Zhiling XIAO  Zhenya YAN  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2021/06/10
      Vol:
    E104-B No:12
      Page(s):
    1506-1513

    This article proposes to apply the auto-correlation function (ACF), bispectrum analysis, and convolutional neural networks (CNN) to implement radar emitter identification (REI) based on intrapulse features. In this work, we combine ACF with bispectrum for signal feature extraction. We first calculate the ACF of each emitter signal, and then the bispectrum of the ACF and obtain the spectrograms. The spectrum images are taken as the feature maps of the radar emitters and fed into the CNN classifier to realize automatic identification. We simulate signal samples of different modulation types in experiments. We also consider the feature extraction method directly using bispectrum analysis for comparison. The simulation results demonstrate that by combining ACF with bispectrum analysis, the proposed scheme can attain stronger robustness to noise, the spectrograms of our approach have more pronounced features, and our approach can achieve better identification performance at low signal-to-noise ratios.

  • How to Select TDOA-Based Bearing Measurements for Improved Passive Triangulation Localization

    Kyu-Ha SONG  San-Hae KIM  Woo-Jin SONG  

     
    LETTER-Measurement Technology

      Vol:
    E102-A No:2
      Page(s):
    490-496

    When time difference of arrival (TDOA)-based bearing measurements are used in passive triangulation, the accuracy of localization depends on the geometric relationship between the emitter and the sensors. In particular, the localization accuracy varies with the geometric conditions in TDOA-based direction finding (DF) for bearing measurement and lines of bearing (LOBs) crossing for triangulation. To obtain an accurate estimate in passive triangulation using TDOA-based bearing measurements, we shall use these bearings selectively by considering geometric dilution of precision (GDOP) between the emitter and the sensors. To achieve this goal, we first define two GDOPs related to TDOA-based DF and LOBs crossing geometries, and then propose a new hybrid GDOP by combining these GDOPs for a better selection of bearings. Subsequently, two bearings with the lowest hybrid GDOP condition are chosen as the inputs to a triangulation localization algorithm. In simulations, the proposed method shows its enhancement to the localization accuracy.

  • Photon Upconversion Dyes System with Red to Yellow Wavelength Conversion Function

    Hirokazu YAMANE  Mayo KAWAHARA  Genta TAKATOKI  Masataka TAGUCHI  Yasuhiro YAMASAKI  Toshihiko NAGAMURA  

     
    PAPER

      Vol:
    E102-C No:2
      Page(s):
    107-112

    Photon upconversion (UC) is a technique to convert long wavelength light into short wavelength light. UC fluorescence by triplet-triplet annihilation (TTA) follows a mechanism involving two kinds of molecules as sensitizer and emitter. In this study, we constructed the photon UC dyes system that was applicable to weak excitation light and convert the red light into yellow light in high efficiency. The present result will be useful for the purpose of application to optical elements and light medical care.

  • A Guide of Fingerprint Based Radio Emitter Localization Using Multiple Sensors Open Access

    Tao YU  Azril HANIZ  Kentaro SANO  Ryosuke IWATA  Ryouta KOSAKA  Yusuke KUKI  Gia Khanh TRAN  Jun-ichi TAKADA  Kei SAKAGUCHI  

     
    INVITED PAPER

      Pubricized:
    2018/04/17
      Vol:
    E101-B No:10
      Page(s):
    2104-2119

    Location information is essential to varieties of applications. It is one of the most important context to be detected by wireless distributed sensors, which is a key technology in Internet-of-Things. Fingerprint-based methods, which compare location unique fingerprints collected beforehand with the fingerprint measured from the target, have attracted much attention recently in both of academia and industry. They have been successfully used for many location-based applications. From the viewpoint of practical applications, in this paper, four different typical approaches of fingerprint-based radio emitter localization system are introduced with four different representative applications: localization of LTE smart phone used for anti-cheating in exams, indoor localization of Wi-Fi terminals, localized light control in BEMS using location information of occupants, and illegal radio localization in outdoor environments. Based on the different practical application scenarios, different solutions, which are designed to enhance the localization performance, are discussed in detail. To the best of the authors' knowledge, this is the first paper to give a guideline for readers about fingerprint-based localization system in terms of fingerprint selection, hardware architecture design and algorithm enhancement.

  • A Direct Localization Method of Multiple Distributed Sources Based on the Idea of Multiple Signal Classification

    Yanqing REN  Zhiyu LU  Daming WANG  Jian LIU  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/11/16
      Vol:
    E101-B No:5
      Page(s):
    1246-1256

    The Localization of distributed sources has attracted significant interest recently. There mainly are two types of localization methods which are able to estimate distributed source positions: two-step methods and direct localization methods. Unfortunately, both fail to exploit the location information and so suffer a loss in localization accuracy. By utilizing the information not used in the above, a direct localization method of multiple distributed sources is proposed in this paper that offers improved location accuracy. We construct a direct localization model of multiple distributed sources and develop a direct localization estimator with the theory of multiple signal classification. The distributed source positions are estimated via a three-dimensional grid search. We also provide Cramer-Rao Bound, computational complexity analysis and Monte Carlo simulations. The simulations demonstrate that the proposed method outperforms the localization methods above in terms of accuracy and resolution.

  • An Enhanced Distributed Adaptive Direct Position Determination

    Wei XIA  Wei LIU  Xinglong XIA  Jinfeng HU  Huiyong LI  Zishu HE  Sen ZHONG  

     
    LETTER-Mathematical Systems Science

      Vol:
    E99-A No:5
      Page(s):
    1005-1010

    The recently proposed distributed adaptive direct position determination (D-ADPD) algorithm provides an efficient way to locating a radio emitter using a sensor network. However, this algorithm may be suboptimal in the situation of colored emitted signals. We propose an enhanced distributed adaptive direct position determination (EDA-DPD) algorithm. Simulations validate that the proposed EDA-DPD outperforms the D-ADPD in colored emitted signals scenarios and has the similar performance with the D-ADPD in white emitted signal scenarios.

  • 0.8-/1.5-GHz-Band WCDMA HBT MMIC Power Amplifiers with an Analog Bias Control Scheme

    Kazuya YAMAMOTO  Takayuki MATSUZUKA  Miyo MIYASHITA  Kenichi MAEDA  Satoshi SUZUKI  Hiroaki SEKI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E98-C No:9
      Page(s):
    934-945

    This paper describes 0.8-/1.5-GHz-band GaAs-HBT power amplifier modules with a newly designed analog bias control scheme. This scheme has two features. One is to achieve approximately linear quiescent current control using not a BiFET process but only the usual HBT process. The other is to help improve linearity under reduced supply voltage and lower quiescent current operation. The following two key techniques are incorporated into the bias scheme. The first is to employ two different kinds of bias circuits: emitter follower bias and current injection bias. The second is the unique current injection bias block, based on the successful combination of an input buffer with an emitter resistance load and a current mirror. These techniques allow quiescent current control that is almost proportional to an externally applied analog control voltage. To confirm the effectiveness of the scheme, 0.8-GHz-band and 1.5-GHz-band power amplifier modules were designed and fabricated using the usual HBT process. Measurements conducted under the conditions of a 3.4V supply voltage and an HSDPA WCDMA modulated signal are as follows. The 0.8-GHz-band amplifier can deliver a 28-dBm output power (Pout), a 28.4-dB power gain (Gp), and 42% PAE while restricting the ACLR to less than -40dBc. For the 1.5-GHz-band amplifier, 28dBm of Pout, 29dB of Gp, and 41% of PAE are obtained with the same ACLR levels. The measurements also confirm that the quiescent current for the second stage in the amplifiers is approximately linearly changed from 14mA to 58mA over a control voltage ranging from 1.1V to 2.2V. In addition, our measured DG.09-based current dissipation with both supply voltage and analog bias controls is as low as 16.9mA, showing that the analog bias control scheme enables an average current reduction of more than 20%, as compared to a conventional supply voltage and two-step quiescent current control.

  • Field-emission Characteristics of a Focused-Ion-Beam-Sharpened P-Type Silicon Single Emitter

    Tomomi YOSHIMOTO  Tatsuo IWATA  

     
    PAPER-Electron Tubes, Vacuum and Beam Technology

      Vol:
    E98-C No:4
      Page(s):
    371-376

    The field electron emission characteristics of a p-type Si emitter sharpened by a spirally scanned Ga focused-ion-beam milling process were investigated. Saturated Fowler--Nordheim (F--N) plots, which are unique phenomena of p-type semiconductor emitters, were observed. The slight increase of the emission current in the saturated F--N plots region was discussed in terms of the depletion layer width in which electron generation occurs. The temperature dependence of the field electron emission current was also discussed. The activation energy of carrier generation was determined to be 0.26,eV, ascribable to the surface states that accompany the defects introduced by the Ga ion beam. When the emitter was irradiated by a 650-nm-wavelength laser, the increase in the emission current, i.e., the photoexcited emission current, was observed in the saturated region of the F--N plots. The photoexcited emission current was proportional to the laser intensity.

  • Estimation of Transit Time in Terahertz Oscillating Resonant Tunneling Diodes with Graded Emitter and Thin Barriers

    Atsushi TERANISHI  Safumi SUZUKI  Kaoru SHIZUNO  Masahiro ASADA  Hiroki SUGIYAMA  Haruki YOKOYAMA  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E95-C No:3
      Page(s):
    401-407

    We estimated the transit time of GaInAs/AlAs double-barrier resonant tunneling diodes (RTDs) oscillating at 0.6–1 THz. The RTDs have graded emitter structures and thin barriers, and are integrated with planar slot antennas for the oscillation. The transit time across the collector depletion region was estimated from measured results of the dependence of oscillation frequency on RTD mesa area. The estimated transit time was slightly reduced with the introduction of the graded emitter, probably due to reduction of the electron transition between Γ and L bands resulted from the low electric field in the collector depletion region.

  • Room Temperature Intense Terahertz Emission from a Dual Grating Gate Plasmon-Resonant Emitter Using InAlAs/InGaAs/InP Material Systems

    Amine EL MOUTAOUAKIL  Tsuneyoshi KOMORI  Kouhei HORIIKE  Tetsuya SUEMITSU  Taiichi OTSUJI  

     
    PAPER-THz Electronics

      Vol:
    E93-C No:8
      Page(s):
    1286-1289

    We report on the first terahertz emission from a novel dual grating gate plasmon-resonant emitter fabricated with InAlAs/InGaAs/InP material systems. The introduction of InP based heterostructure material systems, instead of the GaAs based ones, in order to improve the quality factor, has successfully enhanced the THz emission intensity and realized the spectral narrowing at room temperature.

  • Spectral Narrowing Effect of a Novel Super-Grating Dual-Gate Structure for Plasmon-Resonant Terahertz Emitter

    Takuya NISHIMURA  Nobuhiro MAGOME  HyunChul KANG  Taiichi OTSUJI  

     
    PAPER

      Vol:
    E92-C No:5
      Page(s):
    696-701

    We have proposed a terahertz (THz) emitter utilizing two-dimensional plasmons (2DPs) in a super-grating dual-gate (SGG) high electron mobility transistor (HEMT). The plasmon under each grating gate has a unique feature that its resonant frequency is determined by the plasma-wave velocity over the gate length. Since the drain bias voltage causes a linear potential slope from the source to drain area, the sheet electron densities in periodically distributed 2DP cavities are dispersed. As a result, all the resonant frequencies are dispersed and undesirable spectral broadening occurs. A SGG structure can compensate for the sheet electron density distribution by modulating the grating dimension. The finite difference time domain simulation confirms its spectral narrowing effect. Within a wide detuning range for the gate and drain bias voltages giving a frequency shifting of 0.5 THz from an optimum condition, the SGG structure can preserve the spectral narrowing effect.

  • A Design of Temperature-Compensated Complementary Metal-Oxide Semiconductor Voltage Reference Sources with a Small Temperature Coefficient

    Kyung Soo PARK  Sun Bo WOO  Kae Dal KWACK  Tae Whan KIM  

     
    PAPER

      Vol:
    E91-C No:5
      Page(s):
    751-755

    A novel design for temperature-compensated complementary metal-oxide semiconductor (CMOS) voltage reference sources by using the 1st order voltage reference taking into account the electrical property of the conventional current generator was proposed to minimize a temperature coefficient. A temperature coefficient of the proposed voltage reference source was estimated by using the current generator, which operated at smaller or larger temperature in comparison with the optimized operating temperature. The temperature coefficient at temperature range between -40 and 125, obtained from the simulated data by using hynix 0.35 µm CMOS technology, was 3.33 ppm/. The simulated results indicate that the proposed temperature-compensated CMOS voltage reference sources by using the 1st order voltage reference taking into account the electrical properties of the conventional current generator can be used to decrease the temperature coefficient.

  • Determining GaInP/GaAs HBT Device Structure by DC Measurements on a Two-Emitter HBT Device and High Frequency Transit Time Measurements

    Chinchun MENG  Bo-Chen TSOU  Sheng-Che TSENG  

     
    PAPER-Device

      Vol:
    E88-C No:6
      Page(s):
    1127-1132

    A method to monitor the GaInP/GaAs HBT device structure including emitter ledge thickness is demonstrated in this paper. The base thickness and base doping density are obtained through base transit time and base sheet resistance measurements while the base transit time is measured through the cut-off frequency measurements at various bias points. A large size two-emitter HBT device is used to measure the ledge thickness. Emitter doping profile and collector doping profile are obtained by the large size HBT device through C-V measurements. An FATFET device formed by two emitters as drain and source terminals and the interconnect metal as the on-ledge Schottky gate between two emitters is used to measure the ledge thickness.

  • Back-Irradiation Type Photo-Detector Arrays Using Field Emitter Device

    Takashi ONO  Kazuaki SAWADA  Young Chul JUNG  Yoshitaka MORIYASU  Hidekuni TAKAO  Makoto ISHIDA  

     
    PAPER

      Vol:
    E86-C No:9
      Page(s):
    1805-1809

    A new type of photodetector called "photosensitive floating field emitter, (PFFE)" has been proposed. The PFFE device combines an n-type cone-shaped triode field emitter with a-Si p-i-n photodiode film. However, a PFFE cannot detect two-dimensional distributions of light intensity. In this paper, we propose a novel structure to overcome the above this problem of the PFFE. The device was fabricated on a silicon-on-sapphire substrate to permit irradiation from the backside. p-n photodiodes were constructed within a field emitters, the n+ region being separated by p+ regions to permit detection of two- dimensional light distributions. The emission current of the PFFE/SOS was found to be proportional to the illumination intensity, but the quantum efficiency was only about 2%. This quantum efficiency is lower than that expected. Under irradiation, the emission current increased, but the gate-leakage current increased. This gate-leakage current was several orders of magnitude larger than the emission current. Almost photo-generated electrons lost in the gate electrode.

  • Compact High-Power Photonic Millimeter-Wave Emitter Module for 60-GHz-Band Fiber Radio Links

    Yoshiyuki DOI  Seiji FUKUSHIMA  Kiyoto TAKAHATA  Kaoru YOSHINO  Hiroshi ITO  

     
    INVITED PAPER-MWP Devices

      Vol:
    E86-C No:7
      Page(s):
    1311-1317

    We developed compact high-power photonic millimeter-wave emitter (PME) modules for 60-GHz fiber radio links. The PME chip is a monolithic integration of a uni-traveling-carrier photodiode (UTC-PD) and an antenna. One module was fabricated by attaching the chip and a plastic housing to a metal substrate, and the equivalent-isotropic radiated power (EIRP) of over 8 dBm was obtained with weak directivity of the radiated pattern. This module is suitable for point-to-multi-point communication. It is very compact, 29 24 6 mm. A module whose antenna gain was increased by attaching a dielectric lens to it was also fabricated, and the estimated EIRP of 18 dBm was obtained. This type of module is suitable for point-to-point communication and it too is compact, 29 24 17.5 mm. We achieved high-speed error-free data transmission of 1.25- and 2.5-Gbit/s phase-shift keyed (PSK) signal. The maximum distances of free-space propagation were estimated to be 18.2 and 8.9 m at bit rates of 1.25 and 2.5 Gbit/s, respectively.

  • Modification of New Carbon Based Nano-Materials for Field Emission Devices

    Chia-Fu CHEN  Chia-Lun TSAI  

     
    PAPER

      Vol:
    E86-C No:5
      Page(s):
    803-810

    Field emission display (FED) is evolving as a promising technique of flat panel displays in the future. In this paper, various carbon based nanostructures are acted as cathode materials for field emission devices. Dendrite-like diamond-like carbon emitters, carbon nanotubes, carbon nanotips are synthesized by microwave plasma chemical vapor deposition. Many factors affect the performance of field emitters, such as the shape, work function and aspect ratio of emission materials. Modified process of carbon based nano-materials for enhancing field emission efficiency are included intrinsic and extrinsic process. These reformations contain the p-type and n-type doping, carburization and new ultra well-aligned carbon nano-materials. It is found that carbon nano-materials grown on micropatterned diode show higher efficiency of FED. In addition, to achieve a low- turn-on field, the novel scheme involving a new fabrication process of gated structure metal-insulator-semiconductor (MIS) diode by IC technology is also presented.

  • 128 96 Pixel FEA Image Sensor with HARP Target

    Yoshiro TAKIGUCHI  Katsunori OSADA  Masakazu NANBA  Kazunori MIYAKAWA  Saburo OKAZAKI  Toshio YAMAGISHI  Kenkichi TANIOKA  Masahide ABE  Norifumi EGAMI  Mitsuru TANAKA  Shigeo ITOH  

     
    PAPER-FED Technologies

      Vol:
    E85-C No:11
      Page(s):
    1916-1921

    To investigate the feasibility of a compact FEA image sensor with a large number of pixels, a 128 96 pixel FEA image sensor with a 4-µm-thick HARP target was fabricated and tested for the first time. The experimental results showed that the prototype could stably operate as a highly sensitive image sensor having both sufficient resolution corresponding to the number of pixels and a wide dynamic range, which demonstrated its potential as a next-generation image sensor.

  • 3.0 Gbit/s Wireless Links Using 120-GHz Millimeter-Wave Photonic Techniques

    Akihiko HIRATA  Mitsuru HARADA  Tadao NAGATSUMA  

     
    LETTER-Optoelectronics

      Vol:
    E85-C No:7
      Page(s):
    1516-1518

    Wireless data transmission at 3.0 Gbit/s was achieved by using millimeter-wave photonic techniques, such as optical 120-GHz subcarrier generation, optical modulation, and high-power photonic millimeter-wave emission. We have successfully demonstrated the transmission of optical Gigabit Ethernet signals over this link.

1-20hit(36hit)