Yoshiki YAMAUCHI Osaake NAKAJIMA Koichi NAGATA Hiroshi ITO Tadao ISHIBASHI
A one-by-four static frequency divider using AlGaAs/GaAs heterojunction bipolar transistors (HBTs) was designed to operate at a bias condition that gave a maximum cutoff frequency fT and a maximum oscillation freqency fmax. The fT and fmax applied to the divider were 68 GHz and 56 GHz, respectively. As a result of the tests, the circuit operated up to 34.8 GHz at a power supply voltage of 9 V and power dissipation of 495 mW. A low minimum input signal power level of 0 dBm was also achieved.
Shigenori KINJO Hiroshi OCHI Yoshitatsu TAKARA
In case of the system identification problem, such as an echo canceller, estimated impulse response obtained by the frequency-domain adaptive filter based on the circular convolution has estimation error because the unknown system is based on the linear convolution in the time domain. In this correspondence, we consider a sufficient condition to reduce the estimation error.
Mingyoung ZHOU Jiro OKAMOTO Kazumi YAMASHITA
A novel harmonic retrieval algorithm is proposed in this paper based on Hopfield's neural network. Frequencies can be retrieved with high accuracy and high resolution under low signal to noise ratio (SNR). Amplitudes and phases in harmonic signals can also be estimated roughly by an energy constrained linear projection approach as proposed in the algorithm. Only no less than 2q neurons are necessary in order to detect harmonic siglnals with q different frequencies, where q denotes the number of different frequencies in harmonic signals. Experimental simulations show fast convergence and stable solution in spite of low signal to noise ratio can be obtained using the proposed algorithm.
Motomu TAKATSU Kenichi IMAMURA Hiroaki OHNISHI Toshihiko MORI Takami ADACHIHARA Shunichi MUTO Naoki YOKOYAMA
A 1/2 frequency divider using resonant-tunneling hot electron transistors (RHETs) has been proposed and demonstrated. The circuit make the best use of negative differential conductance, a feature of RHETs, and contains one half transistors than used in conventional circuits. The RHETs were fabricated using self-aligned InGaAs RHETs and WSiN thin-film resistors on a single chip. The RHETs have an i-InGaAlAs/i-InGaAs collector barrier that improves the current gain at low collector-base voltages. Circuit operation was confirmed at 77 K.
This letter proposes an active reflector for calibrating a synthetic aperture radar (SAR), in which the frequency of a received SAR signal is shifted by a certain amount and then it is retransmitted to the SAR. The frequency shift causes a shift of the reflector SAR image in an azimuth direction relative to its background. This function would allow to enhance a signal-to-clutter ratio of the reflector image by moving it onto a radiometrically dark background, and hence it would be of value for SAR calibration even in a narrow test site. The theory, design and development are described briefly.
This study is concerned with modeling and analyzing a nonlinear elastomer impact phenomenon when a mass experiences a collision with the contact pad mounted on the underlying linear dynamic structure. The contact pad which consists of the viscoelastic elastomer is modeled here by a nonlinear contact stiffness and nonlinear contact damper. The underlying dynamic structure is measured by a Fourier spectral analyzer and its analytical form is utilized in modeling and analyzing the whole dynamic impact problem. The impact force profiles are predicted and analyzed in terms of pulse duration, time-to-peak force, and peak force. Finally, the damping mechanism and its hysteresis phenomena are also discussed.
Kazuhiko SEKI Masahiro MORIKURA Shuzo KATO
This paper proposes a high resolution and fast frequency settling PLL synthesizer for frequency hopping radio communication equipment. The proposed synthesizer enables the carrier frequency to be changed within the duration of a burst signal and yields higher frequency resolution than the reference signal frequency. To reduce frequency settling time without degradation of frequency resolution and phase noise, this paper proposes a new phase and frequency preset (PEP) PLL synthesizer which employs a digital phase accumulator to generate high resolution reference signal. Experimental results show that the settling time of a prototype synthesizer is less than 300µs while spurious signals are suppressed by more than 55 dB. In comparison with conventional PLL synthesizers, the frequency settling time is reduced by 80%. Furthermore, the higher frequency resolution than the reference signal is successfully demonstrated. Therefore, the proposed PFP PLL synthesizer with the digital reference signal can achieve the output signal with high frequency resolution less than 1Hz.
Based on the Fornasini-Marchesini second model, an efficient algorithm is developed to derive the characteristic polynomial and the inverse of the system matrix from the state-space parameters. As a result, the external description of the Fornasini-Marchesini second model is clarified. A technique for designing 2-D recursive digital filters in the frequency domain is then presented by using the Fornasini-Marchesini second model. The resulting filter approximates both magnitude and group delay specifications and its stability is always guaranteed. Finally, three design examples are given to illustrate the utility of the proposed technique.
Based on the Fornasini-Marchesini second local state-space (LSS) model, the coefficient sensitivities of two-dimensional (2-D) digital filters are analyzed in conjunction with frequency weighting functions. The overall sensitivity called the frequency-weighting sensitivity is then evaluated using the 2-D generalized Gramians that are newly introduced for the Fornasini-Marchesini second LSS model. Next, the 2-D filter structures that minimize the frequency-weighting sensitivity are synthesized for two cases of no constraint and scaling constraints on the state variables. Finally, an example is given to illustrate the utility of the proposed technique.
Kenichiro CHIBA Fumio TAKAHATA Mitsuo NOHARA
This paper discusses and evaluates, from the viewpoints of definition, analysis, and performance, frequency assignment schemes that enable the efficient assignment of multiple-bandwidth carriers on the transponder in SCPC/FDMA systems with demand assignment operation. The system considered handles carriers of two different bandwidths, and assigns only consecutive slots on the transponder band to broadband carriers. Three types of frequency assignment schemes are proposed, each of which incorporates one or both of two assignment concepts: (1) pre-establishment of assignment priorities on the transponder band, and (2) establishment of broadband slots to guide broadband carrier assignment. Following a definition of the schemes, equations are derived to theoretically analyze performance factors such as call loss for the narrowband and broadband carriers, and system utilization efficiency. Finally, theoretical performance calculated for various traffic and system conditions are presented and evaluated, for the purpose of comparison between the three schemes. Computer simulation results are also presented, to demonstrate the accuracy of the derived equations and to supply data for models too large for theoretical computation. Main results obtained are as follows. (1) Regardless of traffic or system conditions, the assignment scheme incorporating both assignment priorities and broadband slots shows the best performance in terms of broadband call loss and system utilization efficiency. (2) The establishment of broadband slots improves performance when the ratio of broadband traffic to the total traffic volume is high, but worsens performance when the narrowband traffic ratio is higher. (3) All aspects of performance improve with the increase of the total number of assignable slots on the transponder band.
Yasutaka OGAWA Yasuyuki NAGASHIMA Kiyohiko ITOH
High-speed digital land mobile communications suffer from frequency-selective fading due to a long delay difference. Several techniques have been proposed to overcome the multipath propagation problem. Among them, an adaptive array antenna is suitable for very high-speed transmission because it can suppress the multipath signal of a long delay difference significantly. This paper describes the LMS adaptive array antenna for frequency-selective fading reduction and a new diversity technique. First, we propose a method to generate a reference signal in the LMS adaptive array. At the beginning of communication, we use training codes for the reference signal, which are known at a receiver. After the training period, we use detected codes for the reference signal. We can generate the reference signal modulating a carrier at the receiver by those codes. The carrier is oscillated independently of the incident signal. Then, the carrier frequency of the reference signal is in general different from that of the incident signal. However, the LMS adaptive array works in such a way that the carrier frequency of the array output coincides with that of the reference signal. Namely, the frequency difference does not affect the performance of the LMS adaptive array. Computer simulations show the proper behavior of the LMS adaptive array with the above reference signal generator. Moreover, we present a new multipath diversity technique using the LMS adaptive array. The LMS adaptive array reduces the frequency-selective fading by suppressing the multipath components. This means that the transmitted power is not used sufficiently. We propose a multiple beam antenna with the LMS adaptive array. Each antenna pattern receives one of the multipath components, and we combine them adjusting the timing. Then, we realize the multipath diversity. In addition to the multipath fading reduction, we can improve a signal-to-noise ratio by the diversity technique.
Kenichi HAYASHI Tohru SUGAWARA
A new set of self-consistent linear equations is presented for the analysis of the startup characteristics of gyrotron oscillators with an open cavity consisting of weakly irregular waveguides. Numerical results on frequency detuning and oscillation starting current for a whispering-gallery-mode gyrotron are described in which these equations were utilized. Experiments for making a check on the effectiveness of the derived equations showed that they well express the operation of gyrotrons in comparison with the linear theory using an empty cavity field as the wave field.
A frame-installed lightwave synthesizer is constructed for optical frequency-division-multiplexing (FDM) communication. The synthesizer consists of two DFB diode lasers, electrical feedback loops, and an HCN gas cell used as a frequency reference at v0=192,843GHz (1.55459µm in wave-length). Output frequency can be stabilized at anywhere within v0(220) GHz. The beat note observed between the synthesizer and another HCN-stabilized DFB laser is constant within 2MHz over 100 hours. Frequency stability better than 410-10 (80kHz, without normalization) is obtained for an averaging time of 200s.
This paper examines the key technologies and applications of optical frequency division multiplexing (OFDM) systems. It is clarified that a 100-channel OFDM system is feasible as a result of multichannel frequency stabilization, common optical amplification and channel selection utilizing a tunable optical filter. Transmission limitation due to fiber four-wave mixing is also described. Major functions and applications of the OFDM are summarized and the applicability of OFDM add/drop multiplexing is examined.
Nobuo MURAKOSHI Eiji WATANABE Akinori NISHIHARA
It is sometimes required to change the frequency characteristics of a digital filter during its operation. In this paper a new synthesis of variable even-order IIR digital filters is proposed. The cut-off frequency of the filter can be changed by a single parameter. The fundamental filter structure is a cascade of second-order sections. The multiplier coefficients of each section are determined by using the Taylor series expansion of the lowpass to lowpass frequency transformation. For this method any second-order section can be used as a prototype, but here in this paper only the direct form and the lattice form are described. Unlike the conventional method, any transfer functions can be used for the proposed method. Finally a designed example shows that the proposed filter has wider tuning range than the conventional filter, and the advantage of the proposed filters is confirmed.