The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] frequency(1407hit)

1241-1260hit(1407hit)

  • Transmission Experiments on Slow-FH/16QAM System for Land Mobile Communications

    Kiyoshi HAMAGUCHI  Eimatsu MORIYAMA  Yukiyoshi KAMIO  Hideichi SASAOKA  

     
    PAPER

      Vol:
    E81-B No:7
      Page(s):
    1444-1452

    A slow frequency-hopping/16-ary quadrature amplitude modulation (slow-FH/16QAM) system based on time-division-multiple-access (TDMA) is appropriate for third-generation land mobile cellular communications because of its high immunity to interference. The system uses 16QAM for high spectral efficiency and slow-FH and forward-error-correction (FEC) for high-quality transmission. To reduce sensitivity to interference, the system uses an improved decoding scheme based on a minimum Euclidean-distance which is effective when the interference level is dispersed by FH. The bit error rate (BER) of the system due to interference has been evaluated in a previous study, both theoretically and by computer simulation. Although computer-simulated results showed that the system improved the BER, the hardware feasibility was not considered. This paper presents a hardware implementation of the system and the results of experimental transmission using equipment we developed to verify the system and to confirm the BER performance. The laboratory experimental results indicated that the system could provide high-quality transmission over a channel that has frequency-selective fading and co-channel interference. This system provided an Eb/N0 of 9 dB with space diversity and one of 15 dB without it, when BER=10-3 and fd=120 Hz. Field experiments were also conducted in a suburban area of Tokyo to demonstrate the BER performance. The results meant that the system could lower sensitivity to vehicle velocity more than a system without FH and that the BER performance of the system was improved notably against that of a system without FH, especially at low vehicle velocity.

  • Bit-Stream-Arranged Weighted Modulation Scheme for Low Delay Spread Frequency Selective Fading Channels

    Kiyoshi KOBAYASHI  Shuji KUBOTA  

     
    PAPER

      Vol:
    E81-A No:7
      Page(s):
    1452-1458

    This paper proposes a bit-stream-arranged weighted modulation scheme to improve voice quality in low delay spread frequency selective fading channels. The proposed modulation scheme employs an input bit stream arrangement method that changes the bit stream order for significant bits so that they are not adjacent to each other over time; a mapping method that controls the amplitude of the modulation signals according to the importance of the bits; and modified differential encoding to prevent the error propagation from insignificant to significant bits. Computer simulations clarify that the proposed bit-stream-arranged weighted modulation scheme shows a S/N improvement of 8 dB in an 8-bit linear pulse code modulation (PCM) voice signal compared with the conventional non-weighted π/4-shift quadrature phase shift keying (QPSK) modulation scheme. The proposed scheme also shows 3. 5 dB improvement in a 4-bit adaptive differential pulse code modulation (ADPCM) voice signal. In this case, occurence of 'click noise' in recovered voice signal is halved. Although the proposed scheme increases the peak power of the modulated signals, the non-linearity of the power amplifier is not fatal.

  • The Transparent Wave Absorber Using Resistive Film for V-Band Frequency

    Koji TAKIZAWA  Osamu HASHIMOTO  Takumi ABE  Shinkichi NISHIMOTO  

     
    PAPER-Related Technical Issues

      Vol:
    E81-C No:6
      Page(s):
    941-947

    We present a realization of the transparent wave absorber effective for the use at V-band frequency. First, we propose a structure of the transparent wave absorber consisting of spacer (polycarbonate) and two transparent resistive sheet (polyethylene terephtalate deposited with Indium Tin Oxide) used as a reflection film and an absorption film. Second, a design chart for this type of wave absorber is shown. Third, a design method and manufacturing process of the transparent wave absorber are described particularly for V-band frequency. As a result, the measurement of reflection loss of the absorber indicate that a peak absorption of 32-38 dB is attained at a target frequency of 60 GHz.

  • Wide-Band Subharmonically Injection-Locked Oscillators Using Three-Dimensional MMIC Technology

    Kenji KAMOGAWA  Ichihiko TOYODA  Tsuneo TOKUMITSU  Kenjiro NISHIKAWA  

     
    PAPER-Functional Modules and the Design Technology

      Vol:
    E81-C No:6
      Page(s):
    848-855

    Subharmonically Injection-locked oscillators (ILO's) with very wide injection-locking ability are presented. Two types of ILO MMIC's with this ability are proposed. The oscillation frequency tuning function of the ILO MMIC is very useful for expansion of the injection locking range at higher subharmonics. One consists of a shunt varactor diode inserted into the oscillation loop, and the other incorporates a vector-combining configuration with in-phase divider and 90 degree hybrid. Using three-dimensional MMIC's technology which can offer miniature and high-density passive circuits, the vector-combining type ILO is formed in a very compact area of 1. 7 mm2. Fabricated 20 GHz-band ILO achieves a wide tuning ranges of 870 MHz, resulting in a very wide locking range for higher subharmonics. The wide frequency tuning ability also reduces phase noise, shortens a locking time and compensates the center frequency deviation against temperature, as well as increasing locking range. The measured results show that the ILO configuration is extremely suitable for realizing simple, fully monolithic and low phase noise millimeter-wave frequency synthesizers.

  • A New Structure of Frequency Domain Adaptive Filter with Composite Algorithm

    Isao NAKANISHI  Yoshihisa HAMAHASHI  Yoshio ITOH  Yutaka FUKUI  

     
    PAPER-Digital Signal Processing

      Vol:
    E81-A No:4
      Page(s):
    649-655

    In this paper, we propose a new structure of the frequency domain adaptive filter (FDAF). The proposed structure is based on the modified DFT pair which consists of the FIR filters, so that un-delayed output signal can be obtained with stable convergence and without accumulated error which are problems for the conventional FDAFs. The convergence performance of the proposed FDAF is examined through the computer simulations in the adaptive line enhancer (ALE) comparing with the conventional FDAF and the DCT domain adaptive filter. Furthermore, in order to improve the error performance of the FDAF, we propose a composite algorithm which consists of the normalized step size algorithm for fast convergence and the variable step size one for small estimation error. The advantage of the proposed algorithm is also confirmed through simulations in the ALE. Finally, we propose a reduction method of the computational complexity of the proposed FDAF. The proposed method is to utilize a part of the FFT flow-graph, so that the computational complexity is reduced to O(N log N).

  • Bit Significance Selective Frequency Diversity Transmission

    Tomoaki KUMAGAI  Kiyoshi KOBAYASHI  Katsuhiko KAWAZOE  Shuji KUBOTA  

     
    PAPER-Communication Theory

      Vol:
    E81-B No:3
      Page(s):
    545-552

    This paper proposes a frequency diversity transmission scheme that obtains a frequency diversity gain and does not degrade spectrum efficiency; it utilizes multiple carrier frequencies alternately, not simultaneously. This scheme improves the bit error rate (BER) of significant information bits by sacrificing that of insignificant bits in fading channels. Simulation results show that the error floor of significant information bits is reduced to less than 1/5 while that of insignificant bits is doubled. They also show that the proposed scheme improves the received 4-bit ADPCM voice signal-to-noise ratio (SNR) by approximately 4 dB even when the frequency correlation is 0. 5.

  • A 1. 5 GHz CMOS Low Noise Amplifier

    Ryuichi FUJIMOTO  Shoji OTAKA  Hiroshi IWAI  Hiroshi TANIMOTO  

     
    PAPER

      Vol:
    E81-A No:3
      Page(s):
    382-388

    A 1. 5 GHz low noise amplifier (LNA) was designed and fabricated by using CMOS technology. The measured associated gain (Ga) of the LNA is 13. 8 dB, the minimum noise figure (NFmin) is 2. 9 dB and the input-referred third-order intercept point (IIP3) is -2. 5 dBm at 1. 5 GHz. The LNA consumes 8. 6 mA from a 3. 0 V supply voltage. These measured results indicate a potential of short channel MOSFETs for high-frequency and low-noise applications.

  • Nonlinear Characteristics of Insulating LB Films with Nanometer Thickness Sandwiched between Au-Au Contact

    Isao MINOWA  Mitsumasa IWAMOTO  

     
    PAPER

      Vol:
    E81-C No:3
      Page(s):
    330-336

    It is well known that the existence of electrically resistive film layers formed on contact surfaces increases contact resistance and it causes a nonlinear relationship between voltage and current observed in a contact layer. Nonlinear distortion voltages can be detected by our sensitive detection system based on the dual frequency method when a thin film exists on the surface. In this study, multilayer films of polyimide (PI) was used as an ideal material of ultra thin film, because of electrically good insulator with simple molecular structure, to study non-linearity through metal-insulator-metal contact. The number of deposited layers between one and twenty one were formed on three types of substrates; (a) evaporated gold on a glass plate, (b) gold plate and (c) evaporated gold on gold plate, to obtain good insulating film. Where each layer of PI film has 0. 4 nanometer thickness. A pin contact was made by pressing a bent gold wire on the PI film. It is concluded that [1]; the second-order distortion voltage increases exponentially as the film thickness increases, [2]; polarity of the surface potential of PI depends on the film thickness, and that I-V characteristic depends on the polarity of the surface potential.

  • Frequency and Phase Estimation for Single Sinusoid Using Cyclic Autocorrelation

    YoungKi YOON  HwangSoo LEE  

     
    LETTER-Mobile Communication

      Vol:
    E81-B No:3
      Page(s):
    689-693

    In this letter, we propose new methods for estimating frequency and phase of a complex sinusoid in complex white Gaussian noise. These new estimators use the cyclostationarity of the sinusoid which is a cyclostationary signal type. Only one component corresponding to a lag of zero of cyclic autocorrelations is used to reduce the computational load. The performances of our proposed estimators are compared to those of Kay estimator, Cramer-Rao bound (CRB) and maxim-likelihood estimator (MLE). Simulation results show that our proposed methods can estimate the frequency and phase correctly even in low signal-to-noise ratio (SNR).

  • Performance Evaluation for Vehicular Speed Response Phase Locked Loop in Ricean Fading Environment

    Masanori HAMAMURA  Shin'ichi TACHIKAWA  

     
    PAPER-Radio Communication

      Vol:
    E81-B No:3
      Page(s):
    609-615

    Vehicular speed response phase locked loop (VSR-PLL) is a novel circuit to remove a steady-state frequency offset which arises in the receiver with directive antenna. In this paper, the circuit is applied to Ricean fading environment. For the application of VSR-PLL to Ricean statistics channel, the Doppler shift information of direct wave must be obtained because the self-oscillation frequency of VCO is controlled by using the information. This paper describes an estimation method for the Doppler shift of the direct wave, and shows the several results of the performance analysis for the estimation method and proposed VSR-PLL with the method. As a result, we found that the proposed VSR-PLL could reduce the irreducible bit-error rate for QPSK system from about 10-2 to 10-3 on several conditions.

  • A Current-to-Frequency Converter for Switched-Current Circuits

    Yukihiro KURODA  Akira HYOGO  Keitaro SEKINE  

     
    LETTER

      Vol:
    E81-A No:2
      Page(s):
    256-257

    A current-to-frequency converter using switched-current (SI) circuits is proposed. The SI integrator with a hold-and-reset switch can control integration by the output signals. In the proposed circuit the oscillation frequency can be controlled by the input current, and the circuit is operated in the current domain. This is verified by HSPICE simulations.

  • Performances of Asynchronous Slow-Frequency-Hopped Multiple Access Systems with RTT Techniques for Side Information Generation

    Ing-Jiunn SU  Jingshown WU  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E81-A No:2
      Page(s):
    327-332

    The symbol basis side information generated by Viterbi's ratio threshold test technique is proposed to improve the performance of the asynchronous slow-frequency-hopped multiple access system with BFSK signaling in the frequency non-selective fading channel. By properly setting the ratio threshold to produce erasure decisions for the received symbols, the system performances are optimized. The relationship among the hit symbols in a hop duration is exploited by this symbol basis side information to greatly reduce the packet error probability. This packet error rate improvement can be as large as two order of magnitude, compared with perfect hop basis side information systems.

  • A Perfect-Reconstruction Encryption Scheme by Using Periodically Time-Varying Digital Filters

    Xuedong YANG  Masayuki KAWAMATA  Tatsuo HIGUCHI  

     
    LETTER-Digital Signal Processing

      Vol:
    E81-A No:1
      Page(s):
    192-196

    This letter proposes a Perfect-Reconstruction (PR) encryption scheme based on a PR QMF bank. Using the proposed scheme, signals can be encrypted and reconstructed perfectly by using two Periodically Time-Varying (PTV) digital filters respectively. Also we find that the proposed scheme has a "good" encryption effect and compares favorably with frequency scramble in the aspects of computation complexity, PR property, and degree of security.

  • Performance Analysis of a Constrained Yule-Walker Frequency Estimator

    Peter HANDEL  

     
    LETTER-Digital Signal Processing

      Vol:
    E80-A No:12
      Page(s):
    2600-2602

    The performance of a constrained (that is, minimal order) Yule-Walker (CYW) single tone frequency estimator is studied. A closed form expression for the asymptotic error variance is derived. It is shown that CYW does not satisfactorily utilize the informaiton in data, and estimators with improved performance are proposed. Simulation results which lend support to the theoretical findings are included.

  • Ultrasonic Motor Operating in Longitudinal-Torsional Degenerate-Mode

    Takeshi INOUE  Osamu MYOHGA  Noriko WATARI  Takeya HASHIGUCHI  Sadayuki UEHA  

     
    PAPER-Acoustics

      Vol:
    E80-A No:12
      Page(s):
    2540-2547

    The efficiency and reliability of an ultrasonic motor, operating in longitudinal-torsional degenerate-mode, are investigated. It is essential to miniaturize both longitudinal and torsional mode piezoelectric ceramic elements, in order to produce low-cost ultrasonic motors, and to realize a motor with low battery power consumption. The ultrasonic motor is designed with an accurate mechanical equivalent circuit, which can produce high design precision notwithstanding low computation cost. It is important in this design that the resonant frequencies of longitudinal mode and torsional mode coincide with each other under the pertinent rotor pressing force and longitudinal and torsional mode piezoelectric ceramic elements are located in the vibration nodes for the longitudinal mode and the torsional mode, respectively. As a result, the fabricated motor, whose rotor diameter was 12 mm, produced 480 r.p.m. no-load revolution speed, 0.55 kgfcm maximum torque, 50% maximum efficiency, 2.5 W consumed power and a lifetime over 1000 hours with continuous rotation.

  • Theoretical Analysis of a Switched-Capacitor Wien Bridge Oscillator

    Yuuji HORIE  Masahiro TERAMURA  Chikara MINAMITAKE  Tomoyuki MIYAZAKI  

     
    LETTER-Electronic Circuits

      Vol:
    E80-C No:12
      Page(s):
    1622-1623

    A switched-capacitor Wien bridge oscillator and its automatic gain controller are discussed for low-frequency generation. The dc voltage Vs related to the amplitude of oscillation is obtained from the voltage differences in the frequency-determining arm. Theoretical analysis of the ripples in Vs is reported.

  • Carrier Frequency Offset-Spread Spectrum (CFO-SS) Method for Wireless LAN System Using 2.4 GHz ISM Band

    Hiroyasu ISHIKAWA  Hideyuki SHINONAGA  Hideo KOBAYASHI  

     
    PAPER

      Vol:
    E80-A No:12
      Page(s):
    2366-2371

    A wireless communications system with a transmission rate of 10 Mbit/s using Japanese ISM band (2471-2497 MHz) is presented. This system employs a novel spread spectrum multiple access method named "CFO-SS (Carrier Frequency Offset-Spread Spectrum)" method. In the CFO-SS system, a single PN code is commonly assigned to all the multiple carriers, and the frequency offset between the carriers is determined by the information symbol rate, which is small as compared with the spread bandwidth of the signal. Bit error rate performance of the proposed CFO-SS system under multipath environments is investigated by computer simulation, and the performance of the CFO-SS method is confirmed for wireless LAN systems using the 2.4 GHz ISM band.

  • Texture Segmentation Using a Kernel Modifying Neural Network

    Keisuke KAMEYAMA  Kenzo MORI  Yukio KOSUGI  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E80-D No:11
      Page(s):
    1092-1101

    A novel neural network architecture for image texture classification is introduced. The proposed model (Kernel Modifying Neural Network: KM Net) which incorporates the convolution filter kernel and the classifier in one, enables an automated texture feature extraction in multichannel texture classification through the modification of the kernel and the connection weights by the backpropagation-based training rule. The first layer units working as the convolution kernels are constrained to be an array of Gabor filters, which achieves a most efficient texture feature localization. The following layers work as a classifier of the extracted texture feature vectors. The capability of the KM Net and its training rule is verified using a basic problem on a synthetic texture image. In addition, the possibilities of applying the KM Net to natural texture classification and biological tissue classification using an ultrasonic echo image have been tried.

  • An Initial Acquisition Method for M-Ary Spread-Spectrum Signals Using Hadamard Code Sequences

    Tadahiro WADA  Takaya YAMAZATO  Masaaki KATAYAMA  Akira OGAWA  

     
    PAPER-Communications/Coded Modulation/Spread Spectrum

      Vol:
    E80-A No:11
      Page(s):
    2172-2179

    In this paper, we examine a new initial symbol acquisition method for M-ary spread-spectrum (M-ary/SS) signals that are affected by large carrier frequency offset. By the effect of the carrier frequency offset, preamble signal energy is dispersed to the undersired outputs. The proposed method is based on the collection of such dispersed signal energies by using reference patterns. The reference patterns are constructed by using the characteristic of Hadamard code sequences. The effectiveness of the proposed method is evaluated in terms of mean acquisition time.

  • Time-Frequency Analysis of Scattering Data Using the Wavelet Transform

    Masahiko NISHIMOTO  Hiroyoshi IKUNO  

     
    PAPER

      Vol:
    E80-C No:11
      Page(s):
    1440-1447

    Scattering data from radar targets are analyzed in the time-frequency domain by using wavelet transform, and the scattering mechanisms are investigated. The wavelet transform used here is a powerful tool for the analysis of scattering data, because it can provide better insights into scattering mechanisms that are not immediately apparent in either the time or frequency domain. First, two types of wavelet transforms that are applied to the time domain data and to the frequency domain data are defined, and the multi-resolution characteristics of them are discussed. Next, the scattering data from a conducting cylinder, two parallel conducting cylinders, a parallel-plate waveguide cavity, and a rectangular cavity in the underground are analyzed by using these wavelet transforms to reveal the scattering mechanisms. In the resulting time-frequency displays, the scattering mechanisms including specular reflection, creeping wave, resonance, and dispersion are clearly observed and identified.

1241-1260hit(1407hit)