The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] frequency(1415hit)

1281-1300hit(1415hit)

  • Multi-Frequency Signal Classification by Multilayer Neural Networks and Linear Filter Methods

    Kazuyuki HARA  Kenji NAKAYAMA  

     
    PAPER-Neural Networks

      Vol:
    E80-A No:5
      Page(s):
    894-902

    This paper compares signal classification performance of multilayer neural networks (MLNNs) and linear filters (LFs). The MLNNs are useful for arbitrary waveform signal classification. On the other hand, LFS are useful for the signals, which are specified with frequency components. In this paper, both methods are compared based on frequency selective performance. The signals to be classified contain several frequency components. Furthermore, effects of the number of the signal samples are investigated. In this case, the frequency information may be lost to some extent. This makes the classification problems difficult. From practical viewpoint, computational complexity is also limited to the same level in both methods.IIR and FIR filters are compared. FIR filters with a direct form can save computations, which is independent of the filter order. IIR filters, on the other hand, cannot provide good signal classification deu to their phase distortion, and require a large amount of computations due to their recursive structure. When the number of the input samples is strictly limited, the signal vectors are widely distributed in the multi-dimensional signal space. In this case, signal classification by the LF method cannot provide a good performance. Because, they are designed to extract the frequency components. On the other hand, the MLNN method can form class regions in the signal vector space with high degree of freedom.

  • Trellis-Coded OFDM Signal Detection with Maximal Ratio Combining and Combined Equalization and Trellis Decoding

    SeongSik LEE  Jeong Woo JWA  HwangSoo LEE  

     
    LETTER-Radio Communication

      Vol:
    E80-B No:4
      Page(s):
    632-638

    We propose an improved orthogonal frequency division multiplexing (OFDM) signal detector which uses the minimum mean-square error (MMSE) noise feedback equalization (NFE). The input bit stream is trellis-coded to form OFDM signal blocks and the maximal ratio combining (MRC) is adopted at the receiver in order to improve the performance of the detector. As a result, we obtain significantly improved detection performance compared with the conventional OFDM receivers as follows. Using the proposed MMSE-NFE in the receiver, we can obtain the performance gain of about 1.5 dB to 2 dB in symbol energy to noise power spectral density (Es/No) for Doppler frequencies of fd=20 and 100 Hz, respectively, over the receiver with the MMSE linear equalization (LE) alone at symbol error rate (SER) of about 10-3. With MRC and trellis coding, the performance gain of about 11 dB in Es/No for fd=20 and 100 Hz at SER of about 10-3 is obtained.

  • Radio-Frequency Silicon LSI's for Personal Communications

    Masayuki ISHIKAWA  Tsuneo TSUKAHARA  

     
    INVITED PAPER-Analog LSI

      Vol:
    E80-C No:4
      Page(s):
    515-524

    RF integration, until recently the integration of active devices in conventional architectures suitable for discrete-component circuits, is now turning into full-integration based on new architectures developed specifically for an LSI technology. This paper reviews some of the key existing and emerging circuit techniques and discusses the serious problem of crosstalk. In order to develop miniature and low power RF transceivers, direct-conversion and monolithic VCO's will be further studied. Silicon bipolar technology will still be playing major role beyond the year 2,000, and CMOS will also be used in certain applications.

  • PLL Frequency Synthesizer for Low Power Consumption

    Yasuaki SUMI  Kouichi SYOUBU  Kazutoshi TSUDA  Shigeki OBOTE  Yutaka FUKUI  

     
    PAPER

      Vol:
    E80-A No:3
      Page(s):
    461-465

    In this paper, in order to achieve the low power consumption of programmable divider in a PLL frequency synthesizer, we propose a new prescaler method for low power consumption. A fixed prescaler is inserted in front of the (N +1/2) programmable divider which is designed based on the new principle. The divider ratio in the loop does not vary at all even if such a prescaler is utilized. Then the permissible delay periods of a programmable divider can be extended to two times as long as the conventional method, and the low power consumption and low cost in a PLL frequency synthesizer have been achieved.

  • Wireless Tag System Using an Infrared Beam and an Electromagnetic Wave for Outdoor Facilities

    Yasuhiro NAGAI  Naobumi SUZUKI  Yoshimitsu OHTANI  Yutaka ICHINOSE  Hiroyuki SUDA  

     
    LETTER-Radio Communication

      Vol:
    E80-B No:3
      Page(s):
    494-498

    A wireless tag system has been designed and developed for maintaining and managing outdoor communication facilities. This system employs an infrared (IR) beam and an electromagnetic wave with a radio frequency (RF), and is constructed using IR-RF tags, an IR commander, and an RF receiver. The IR command radiation with strong directivity enables a maintenance operator to recognize a target facility, and the RF response without directivity enables a management system to obtain data from within a large circular area. Solar and secondary batteries are also adopted as the power module in the tag to allow easy maintenance at long intervals. IR signal communication is possible up to a distance of 9 m, and RF signal communication is possible within a circle with a radius of 9 m.

  • Design of a Low-Voltage, Low-Power, High-Frequency CMOS Current-Mode VCO Circuit by Using 0.6µm MOS Devices

    Yasuhiro SUGIMOTO  Takeshi UENO  Takaaki TSUJI  

     
    PAPER

      Vol:
    E80-A No:2
      Page(s):
    304-312

    We have designed a new current-mode low-voltage, low-power, high-frequency CMOS VCO circuit. The main purpose of this new circuit is to obtain operational capabilities with more than 1 GHz oscillation frequency from one battery cell. The current-mode approach was adopted throughout the circuit design to achieve this. New differential-type delay cells in the current-mode operation enable extremely low supply voltage operation and superior linearity between the oscillation frequency and control voltage of a ring oscillator. A design which combines the transitions of each delay cell output enables the VCO's high-frequency operation. To obtain a sufficient current level at output, a current amplifier with a small amount of positive feedback is used. The unnecessary generation of spectral components caused by mismatched time delay of delay cells in a ring-oscillator, which is an inherent problem of the VCO in a ring-oscillator form, is 0also analyzed. The characteristics of the designed VCO were examined by the SPICE circuit simulation using standard CMOS 0.6µm devices. Operation with a 1 V power supply, 1 GHz oscillation frequency, and 5.7 mW power dissipation was verified.

  • A Low Power CMOS Dual Modulus Prescaler for Frequency Synthesizers

    Francesco PIAZZA  Qiuting HUANG  

     
    PAPER-Integrated Electronics

      Vol:
    E80-C No:2
      Page(s):
    314-319

    A low power dual modulus prescaler for frequency synthesizers has been designed in a standard 1.2 µm digital CMOS process using enhancement source coupled logic (ESCL). Being a differential low amplitude current mode logic, ESCL has two interesting characteristics for this design besides low power consumption: the low noise performance, that allows this circuit to be on the same chip with sensitive analog circuitry, and the ability to run with a 200 mV sinusoidal signal as generated from an LC oscillator without the need of a clock amplifier. At 195 MHz and 3 V supply, the current consumption of the prescaler is as low as 289 µA, while maximum operating frequencies of 910 MHz at 5 V and 650 MHz at 3 V are achieved.

  • A Novel ST-DFT based M-ary FSK Demodulation MethodFrequency Sequence Estimationfor LEO Satellite Communications

    Attapol WANNASARNMAYTHA  Shinsuke HARA  Norihiko MORINAGA  

     
    PAPER-Modem and Coding

      Vol:
    E80-B No:1
      Page(s):
    33-39

    This paper proposes a novel M-ary FSK demodulation scheme using the Short Time Discrete Fourier Transform (ST-DFT) analysis named Frequency Sequence Estimation (FSE) for low earth orbit (LEO) satellite-based personal multimedia communications. The FSE is a kind of the Viterbi algorithm, searching for the maximum likely frequency path using the instantaneous ST-DFT output as a metric. It is based on the fact that the discrete time-frequency representation of the received signal can be interpreted as a trellis diagram. The proposed method has the excellent transmission performance and spectral efficiency, as well as its own hardware simplicity and frequency offset insensitivity.

  • A New AFC Circuit Employing Double-Product Type Frequency Discriminator in Very-Low CNR Environments

    Nobuaki MOCHIZUKI  Takatoshi SUGIYAMA  Masahiro UMEHIRA  

     
    PAPER-Modem and Coding

      Vol:
    E80-B No:1
      Page(s):
    25-32

    This paper proposes a new AFC (automatic frequency control) circuit employing a double-product type frequency discriminator to enable fast acquisition in very-low CNR (carrier to noise power ratio) environments. The frequency step responses of the proposed AFC circuit are theoretically analyzed. In addition this paper evaluates the performance of the proposed AFC circuit by computer simulation in very-low CNR environments. The simulation results confirm that click noise at the frequency discriminator causes large frequency tracking error and that this error can be improved by increasing the delay time of the double-product type frequency discriminator. The frequency error can be also reduced by introducing the proposed frequency discriminator to modify the frequency error detection performance. The acquisition time of the proposed AFC circuit can be reduced by about 100 symbols compared to the conventional cross-product type AFC circuit.

  • Analysis of Cycle Slip in Clock Recovery on Frequency-Selective Nakagami-Rice Fading Channels Based on the Equivalent Transmission-Path Model

    Yoshio KARASAWA  Tomonori KURODA  Hisato IWAI  

     
    PAPER-Radio Communication

      Vol:
    E79-B No:12
      Page(s):
    1900-1910

    A very simple but general scheme has been developed to calculate burst error occurrences due to cycle slip in clock recovery on frequency-selective Nakagami-Rice fading channels. The scheme, which we call the "Equivalent Transmission-Path Model," plays a role in connecting "wave propagation" with "digital transmission characteristics" in a general manner. First computer simulations assuming various types of delay profiles identify the "key parameters in Nakagami-Rice fading" that principally dominate the occurrence of cycle slips. Following this a simple method is developed to calculate the occurrence frequency of cycle slips utilizing the nature of the key parameters. Then, the accuracy of the scheme is confirmed through comparison between calculated values and simulation results. Finally, based on the scheme, calculated results on cycleslip occurrences are presented in line-of-sight fading environments.

  • An Algorithm for Joint Detection in Fast Frequency Hopping Systems

    Uwe-Carsten G. FIEBIG  

     
    PAPER

      Vol:
    E79-A No:12
      Page(s):
    2010-2017

    In this contribution an algorithm for joint detection in fast frequency hopping/multiple frequency shift keying (FFH/MFSK) multiple access (MA) systems is presented. The new algorithm - referred to as REC algorithm - evaluates ambiguities which occur during the decision process and iteratively reduces the number of candidate symbols. The REC algorithm is of low complexity, suitable for every addressing scheme, and effective for both an interference-only channel and a fading channel. For the interference-only channel the REC algorithm enables maximum likelihood (ML) joint detection with low computational effort.

  • Low Power Design Technology for Digital LSIs

    Tadayoshi ENOMOTO  

     
    INVITED PAPER

      Vol:
    E79-C No:12
      Page(s):
    1639-1649

    Discussed here is reduction of power dissipation for multi-media LSIs. First, both active power dissipation Pat and stand-by power dissipation Pst for both CMOS LSIs and GaAs LSIs are summarized. Then, general technologies for reducing Pat are discussed. Also reviewed are a wide variety of approaches (i.e., parallel and pipeline schemes, Chen's fast DCT algorithms, hierarchical search scheme for motion vectors, etc.) for reduction of Pat. The last part of the paper focuses on reduction of Pst. Reducing both Pat and Pst requires that both throughput and active chip areas be either maintained or improved.

  • An Advanced BSG Self-Aligned (A-BSA) Transistor Technology for High Speed IC Implementation

    Tsutomu TASHIRO  Mitsuhiro SUGIYAMA  Hisashi TAKEMURA  Chihiro OGAWA  Masakazu KURISU  Hideki KITAHATA  Takenori MORIKAWA  Masahiko NAKAMAE  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E79-C No:12
      Page(s):
    1733-1740

    This paper reports on a high-speed silicon bipolar transistor with an fT and fMAX of over 40 GHz, we call it the Advanced Boro-silicated-glass Self-Aligned (A-BSA) transistor. In basic BSA technology, a CVD-BSG film is used not only as a diffusion source to form the intrinsic base and the link base regions but also as a sidewall spacer between the emitter and the base polysilicon electrodes. An A-BSA transistor offers three advancements to this technology: (1) a graded collector profile underneath the intrinsic base region to suppress the Kirk effect; (2) an optimized design of the link base region to prevent the frade-off effect between fT and base resistance; and (3) a newly developed buried emitter electrode structure, consisting of an N++-polysilicon layer, a platinum silicide layer, and a CVD tungsten plug, to prevent the emitter plug effect. Furthermore, our transistor uses a BPSG filled trench isolation to reduce parasitic capacitance and improve circuit performance. In this paper, we describe device design, process technology and characterization of the A-BSA transistor, with it we have performed several application ICs, operating at 10Gb/s and above. The A-BSA transistor achieved an fT of 41 GHz and an fMAX of 44 GHz under optimized conditions.

  • Single-Layer Slotted Waveguide Arrays for Millimeter Wave Applications

    Kunio SAKAKIBARA  Jiro HIROKAWA  Makoto ANDO  Naohisa GOTO  

     
    PAPER

      Vol:
    E79-B No:12
      Page(s):
    1765-1772

    A slotted waveguide planar array using a single-layer feed circuit is applied to high frequency and high gain use. The remarkable efficiency of 75.6% is realized for the gain of 35.9 dBi in 22 GHz band and 64% is realized for 35.1 dBi in 60 GHz band. Each antenna consists of only two components; a slotted plate and a groove base plate, and are highly mass produceable.

  • Proposal and Analysis of a Three-Terminal Photon-Assisted Tunneling Device Operating in the Terahertz Frequency Range

    Masahiro ASADA  

     
    PAPER

      Vol:
    E79-C No:11
      Page(s):
    1537-1542

    A three-terminal quantum device utilizing photon-assisted tunneling in a multilayer structure is proposed and analyzed in terms of its high frequency amplification characteristics. The operation principle of this device includes photonassisted tunneling at the input, formation of a propagating charge wave due to the beat of tunneling electrons and its acceleration, and radiation of electromagnetic waves at the output. Analysis of these operations, discussion of similarities and dissimilarities to classical klystrons, and estimation of the power gain and its frequency dependence are given. A simple example demonstrates that amplification up to the terahertz frequency range is possible using this device.

  • Large Doppler Frequency Compensation Technique for Terrestrial and LEO Satellite Dual Mode DS/CDMA Terminals

    Jae-Woo JEONG  Seiichi SAMPEI  Norihiko MORINAGA  

     
    PAPER-Satellite Communication

      Vol:
    E79-B No:11
      Page(s):
    1696-1703

    This paper proposes a novel Doppler frequency shift compensation technique to achieve terrestrial and low earth orbit (LEO) satellite dual mode DS/CDMA terminals robust to high Doppler shift and multipath fading. In order to satisfy the requirements of wide dynamic range and high accuracy simultaneously, the proposed scheme employs two stage compensation scheme, i.e., coarse compensation to keep dynamic range of about 100 kHz and fine compensation to satisfy its resolution of about 30 Hz, using block demodulation technique. Computer simulation results show that the proposed scheme can sufficiently compensate for the offset frequency up to the range of about 100 kHz at the terrestrial and LEO satellite combined mobile communication systems.

  • A New Short-Time DFT FSK Demodulation Method for LEO Satellite Communications Systems

    Attapol WANNASARNMAYTHA  Shinsuke HARA  Norihiko MORINAGA  

     
    PAPER-Satellite Communication

      Vol:
    E79-B No:10
      Page(s):
    1592-1597

    This paper presents a new Frequency Shift Keying (FSK) demodulation method using the Short Time-Discrete Fourier Transform (ST-DFT) analysis to combat large frequency offset with time variation in low earth orbit (LEO) satellite communications systems. This demodulation method can demodulate the received signal only by searching for the instantaneous spectrum energy peaks without complicated carrier recovery. In addition, it is insensitive to the signal-to-noise ratio (SNR) degradation caused by the excessively wide bandwidth of the receiver front-end band pass filter. Furthermore, the ST-DFT analysis combined with a differential encoding scheme gives FSK demodulation method a potential robustness against large and fast time-varying frequency offset.

  • Method of Equivalent Currents for Calculation of Surface Diffraction by a Smooth Convex Objects

    Masahiko NISHIMOTO  Hiroyoshi IKUNO  

     
    PAPER

      Vol:
    E79-C No:10
      Page(s):
    1321-1326

    A high-frequency approximate method for calculating the diffraction by a smooth convex surface is presented. The advantage of this method is the validity of it in the caustic region of the creeping rays where the Geometrical Theory of Diffraction (GTD) becomes invalid. The concept used in this method is based on the Method of Equivalent Edge Currents (EEC), and the equivalent line currents for creeping rays which are derived from the diffraction coefficients of the GTD are used. By evaluating the radiation integral of these equivalent line currents, the creeping ray contribution which is valid within the caustic region is obtained. In order to check the accuracy and the validity of the method, the diffraction problem by a perfectly conducting sphere of radius a is solved by applying the method, and the obtained results are compared with the exact and the GTD solutions. It is confirmed from the comparison that the failure of the GTD near the caustic is removed in this method and accurate solution is obtained in this area for high-frequency (ka8). Furthermore, it is also found that this method is valid in the backward region (0θ90, θ is an observation angle mesuered from an incident direction), whereas not in the forward region (90θ180).

  • A New M-ary Spread-Spectrum Multiple-Access Scheme in the Presence of Carrier Frequency Offset

    Tadahiro WADA  Takaya YAMAZATO  Masaaki KATAYAMA  Akira OGAWA  

     
    PAPER-Communication/Spread Spectrum

      Vol:
    E79-A No:9
      Page(s):
    1415-1422

    The performance of an M-ary spread-spectrum multiple-access (M-ary/SSMA) scheme in the presence of carrier frequency offset is discussed in this paper. The influence of carrier frequency offset on the non-coherent reception of M-ary/SSMA signals is examined and it is shown that the carrier frequency offset degrades the performance remarkably, yet. this influence has a distinctive property. Making use of this property, we propose a new M-ary/SSMA scheme that can mitigate the influence of the carrier frequency offset. The scheme is based on the assignment of two distinctive Hadamard codes to in-phase and quadrature components of the transmitted signal. The effect of simultaneous transmission is evaluated in terms of bit-error-rate performance with the carrier frequency offset. As the result, it is observed that the satisfactory bit-error-rate performance can be achieved in the presence of carrier frequendy offset.

  • M-Ary Orthogonal Keying under Carrier Frequency Offset

    Nozomu NISHINAGA  Yoshihiro IWADARE  

     
    PAPER-Communication/Spread Spectrum

      Vol:
    E79-A No:9
      Page(s):
    1408-1414

    M-ary orthogonal keying (MOK) systems under carrier frequency offset (CFO) are investigated. It is shown that spurious signals are introduced by the offset frequency components of spectrum after multiplication in correlation detection process, and some conditions on robust orthogonal signal sets are derived. Walsh function sets are found to be very weak against CFO, since they produce large spurious signals. As robust orthogonal signal sets against CFO, the rows of circulant Hadamard matrices are proposed and their error performanses are evaluated. The results show that they are good M-ary orthogonal signal sets in the presence of CFO.

1281-1300hit(1415hit)