Menglong WU Jianwen ZHANG Yongfa XIE Yongchao SHI Tianao YAO
Direct-current biased optical orthogonal frequency division multiplexing (DCO-OFDM) exhibits a high peak-to-average power ratio (PAPR), which leads to nonlinear distortion in the system. In response to the above, the study proposes a scheme that combines direct-current biased optical orthogonal frequency division multiplexing with index modulation (DCO-OFDM-IM) and convex optimization algorithms. The proposed scheme utilizes partially activated subcarriers of the system to transmit constellation modulated symbol information, and transmits additional symbol information of the system through the combination of activated carrier index. Additionally, a dither signal is added to the system’s idle subcarriers, and the convex optimization algorithm is applied to solve for the optimal values of this dither signal. Therefore, by ensuring the system’s peak power remains unchanged, the scheme enhances the system’s average transmission power and thus achieves a reduction in the PAPR. Experimental results indicate that at a system’s complementary cumulative distribution function (CCDF) of 10-4, the proposed scheme reduces the PAPR by approximately 3.5 dB compared to the conventional DCO-OFDM system. Moreover, at a bit error rate (BER) of 10-3, the proposed scheme can lower the signal-to-noise ratio (SNR) by about 1 dB relative to the traditional DCO-OFDM system. Therefore, the proposed scheme enables a more substantial reduction in PAPR and improvement in BER performance compared to the conventional DCO-OFDM approach.
Orthogonal frequency division multiplexing with index modulation (OFDM-IM) is a novel scheme where the information bits are conveyed through the subcarrier activation pattern (SAP) and the symbols on the active subcarriers. Specifically, the subcarriers are partitioned into many subblocks and the subcarriers in each subblock can have two states, active or idle. Unfortunately, OFDM-IM inherits the high peak-to-average power ratio (PAPR) problem from the classical OFDM. The OFDM-IM signal with high PAPR induces in-band distortion and out-of-band radiation when it passes through high power amplifier (HPA). Recently, there are attempts to reduce PAPR by exploiting the unique structure of OFDM-IM, which is adding dither signals in the idle subcarriers. The most recent work dealing with the dither signals is using dithers signals with various amplitude constraints according to the characteristic of the corresponding OFDM-IM subblock. This is reasonable because OFDM subblocks have distinct levels of robustness against noise. However, the amplitude constraint in the recent work is efficient for only additive white Gaussian noise (AWGN) channels and cannot be used for maximum likelihood (ML) detection. Therefore, in this paper, based on pairwise error probability (PEP) analysis, a specific constraint for the dither signals is derived over a Rayleigh fading channel.
Chaorong ZHANG Yuyang PENG Ming YUE Fawaz AL-HAZEMI
As a potential member of next generation wireless communications, the reconfigurable intelligent surface (RIS) can control the reflected elements to adjust the phase of the transmitted signal with less energy consumption. A novel RIS-assisted index modulation scheme is proposed in this paper, which is named the generalized reflected phase modulation (GRPM). In the GRPM, the transmitted bits are mapped into the reflected phase combination which is conveyed through the reflected elements on the RIS, and detected by the maximum likelihood (ML) detector. The performance analysis of the GRPM with the ML detector is presented, in which the closed form expression of pairwise error probability is derived. The simulation results show the bit error rate (BER) performance of GRPM by comparing with various RIS-assisted index modulation schemes in the conditions of various spectral efficiency and number of antennas.
Yuma TSUCHIDA Kohei KUBO Hisashi KOGA
Similarity search for data streams has attracted much attention for information recommendation. In this context, recent leading works regard the latest W items in a data stream as an evolving set and reduce similarity search for data streams to set similarity search. Whereas they consider standard sets composed of items, this paper uniquely studies similarity search for text streams and treats evolving sets whose elements are texts. Specifically, we formulate a new continuous range search problem named the CTS problem (Continuous similarity search for Text Sets). The task of the CTS problem is to find all the text streams from the database whose similarity to the query becomes larger than a threshold ε. It abstracts a scenario in which a user-based recommendation system searches similar users from social networking services. The CTS is important because it allows both the query and the database to change dynamically. We develop a fast pruning-based algorithm for the CTS. Moreover, we discuss how to speed up it with the inverted index.
Ryuji MIYAMOTO Osamu TAKYU Hiroshi FUJIWARA Koichi ADACHI Mai OHTA Takeo FUJII
With the rapid developments in the Internet of Things (IoT), low power wide area networks (LPWAN) framework, which is a low-power, long-distance communication method, is attracting attention. However, in LPWAN, the access time is limited by Duty Cycle (DC) to avoid mutual interference. Packet-level index modulation (PLIM) is a modulation scheme that uses a combination of the transmission time and frequency channel of a packet as an index, enabling throughput expansion even under DC constraints. The indexes used in PLIM are transmitted according to the mapping. However, when many sensors access the same index, packet collisions occur owing to selecting the same index. Therefore, we propose a mapping design for PLIM using mathematical optimization. The mapping was designed and modeled as a quadratic integer programming problem. The results of the computer simulation evaluations were used to realize the design of PLIM, which achieved excellent sensor information aggregation in terms of environmental monitoring accuracy.
Ullah IMDAD Akram BEN AHMED Kazuei HIRONAKA Kensuke IIZUKA Hideharu AMANO
FPGA clusters that consist of multiple FPGA boards have been gaining interest in recent times. Massively parallel processing with a stand-alone heterogeneous FPGA cluster with SoC- style FPGAs and mid-scale FPGAs is promising with cost-performance benefit. Here, we propose such a heterogeneous FPGA cluster with FiC and M-KUBOS cluster. FiC consists of multiple boards, mounting middle scale Xilinx's FPGAs and DRAMs, which are tightly coupled with high-speed serial links. In addition, M-KUBOS boards are connected to FiC for ensuring high IO data transfer bandwidth. As an example of massively parallel processing, here we implement genomic pattern search. Next-generation sequencing (NGS) technology has revolutionized biological system related research by its high-speed, scalable and massive throughput. To analyze the genomic data, short read mapping technique is used where short Deoxyribonucleic acid (DNA) sequences are mapped relative to a known reference sequence. Although several pattern matching techniques are available, FM-index based pattern search is perfectly suitable for this task due to the fastest mapping from known indices. Since matching can be done in parallel for different data, the massively parallel computing which distributes data, executes in parallel and gathers the results can be applied. We also implement a data compression method where about 10 times reduction in data size is achieved. We found that a M-KUBOS board matches four FiC boards, and a system with six M-KUBOS boards and 24 FiC boards achieved 30 times faster than the software based implementation.
A multifunctional radar (MFR) with varying pulse sequences can change its signal characteristics and/or pattern, based on the presence of targets and to avoid being jammed. To take a countermeasure against an MFR, it is crucial for an electronic warfare (EW) system to be able to identify and separate a MFR's modes via analyzing intercepted radar signals, without a priori knowledge. In this article, two correlation-based methods, one taking the signal's order into account and another one ignoring the signal's order, are proposed and investigated for this task. The results demonstrate their great potential.
Midori NAGASAKA Taiki ARAKAWA Yutaro MOCHIDA Kazunori KAMEDA Shinichi FURUKAWA
In this study, we discuss a structure that realizes a wideband polarization splitter comprising fiber 1 with a single core and fiber 2 with circular pits, which touch the top and bottom of a single core. The refractive index profile of the W type was adopted in the core of fiber 1 to realize the wideband. We compared the maximum bandwidth of BW-15 (bandwidth at an extinction ratio of -15dB) for the W type obtained in this study with those (our previous results) of BW-15 for the step and graded types with cores and pits at the same location; this comparison clarified that the maximum bandwidth of BW-15 for the W type is 5.22 and 4.96 times wider than those of step and graded types, respectively. Furthermore, the device length at the maximum bandwidth improved, becoming slightly shorter. The main results of the FPS in this study are all obtained by numerical analysis based on our proposed MM-DM (a method that combines the multipole method and the difference method for the inhomogeneous region). Our MM-DM is a quite reliable method for high accuracy analysis of the FPS composed of inhomogeneous circular regions.
Yohei WATANABE Takeshi NAKAI Kazuma OHARA Takuya NOJIMA Yexuan LIU Mitsugu IWAMOTO Kazuo OHTA
Searchable symmetric encryption (SSE) enables clients to search encrypted data. Curtmola et al. (ACM CCS 2006) formalized a model and security notions of SSE and proposed two concrete constructions called SSE-1 and SSE-2. After the seminal work by Curtmola et al., SSE becomes an active area of encrypted search. In this paper, we focus on two unnoticed problems in the seminal paper by Curtmola et al. First, we show that SSE-2 does not appropriately implement Curtmola et al.'s construction idea for dummy addition. We refine SSE-2's (and its variants') dummy-adding procedure to keep the number of dummies sufficiently many but as small as possible. We then show how to extend it to the dynamic setting while keeping the dummy-adding procedure work well and implement our scheme to show its practical efficiency. Second, we point out that the SSE-1 can cause a search error when a searched keyword is not contained in any document file stored at a server and show how to fix it.
Various types of indices for estimating functional connectivity have been developed over the years that have introduced effective approaches to discovering complex neural networks in the brain. Two significant examples are the phase lag index (PLI) and transfer entropy (TE). Both indices have specific benefits; PLI, defined using instantaneous phase dynamics, achieves high spatiotemporal resolution, whereas transfer entropy (TE), defined using information flow, reveals directed network characteristics. However, the relationship between these indices remains unclear. In this study, we hypothesize that there exists a complementary relationship between PLI and TE to discover new aspects of functional connectivity that cannot be detected using either PLI or TE. To validate this hypothesis, we evaluated the synchronization in a coupled Rössler model using PLI and TE. Consequently, we proved the existence of non-linear relationships between PLI and TE. Both indexes exhibit a specific trend that demonstrates a linear relationship in the region of small TE values. However, above a specific TE value, PLI converges to a constant irrespective of the TE value. In addition to this relational difference in synchronization, there is another characteristic difference between these indices. Moreover, by virtue of its finer temporal resolution, PLI can capture the temporal variability of the degree of synchronization, which is called dynamical functional connectivity. TE lacks this temporal characteristic because it requires a longer evaluation period in this estimation process. Therefore, combining the advantages of both indices might contribute to revealing complex spatiotemporal functional connectivity in brain activity.
Tomoki KAGA Mamoru OKUMURA Eiji OKAMOTO Tetsuya YAMAMOTO
In the fifth-generation mobile communications system (5G), it is critical to ensure wireless security as well as large-capacity and high-speed communication. To achieve this, a chaos modulation method as an encrypted and channel-coded modulation method in the physical layer is proposed. However, in the conventional chaos modulation method, the decoding complexity increases exponentially with respect to the modulation order. To solve this problem, in this study, a hybrid modulation method that applies quadrature amplitude modulation (QAM) and chaos to reduce the amount of decoding complexity, in which some transmission bits are allocated to QAM while maintaining the encryption for all bits is proposed. In the proposed method, a low-complexity decoding method is constructed by ordering chaos and QAM symbols based on the theory of index modulation. Numerical results show that the proposed method maintains good error-rate performance with reduced decoding complexity and ensures wireless security.
Tsutomu SASAO Yuto HORIKAWA Yukihiro IGUCHI
A classification function maps a set of vectors into several classes. A machine learning problem is treated as a design problem for partially defined classification functions. To realize classification functions for MNIST hand written digits, three different architectures are considered: Single-unit realization, 45-unit realization, and 45-unit ×r realization. The 45-unit realization consists of 45 ternary classifiers, 10 counters, and a max selector. Test accuracy of these architectures are compared using MNIST data set.
Hiroyasu ISHIKAWA Yuki HORIKAWA Hideyuki SHINONAGA
In the typical unmanned aircraft system (UAS), several unmanned aerial vehicles (UAVs) traveling at a velocity of 40-100km/h and with altitudes of 150-1,000m will be used to cover a wide service area. Therefore, Doppler shifts occur in the carrier frequencies of the transmitted and received signals due to changes in the line-of-sight velocity between the UAVs and the terrestrial terminal. By observing multiple Doppler shift values for different UAVs or observing a single UAV at different local times, it is possible to detect the user position on the ground. We conducted computer simulations for evaluating user position detection accuracy and Doppler shift distribution in several flight models. Further, a positioning accuracy index (PAI), which can be used as an index for position detection accuracy, was proposed as the absolute value of cosine of the inner product between two gradient vectors formed by Doppler shifts to evaluate the relationship between the location of UAVs and the position of the user. In this study, a maximum positioning error estimation method related to the PAI is proposed to approximate the position detection accuracy. Further, computer simulations assuming a single UAV flying on the curved routes such as sinusoidal routes with different cycles are conducted to clarify the effectiveness of the flight route in the aspects of positioning accuracy and latency by comparing with the conventional straight line fight model using the PAI and the proposed maximum positioning error estimation method.
Outlier detection in a data set is very important in performing proper data mining. In this paper, we propose a method for efficiently detecting outliers by performing cluster analysis using the DS algorithm improved from the k-means algorithm. This method is simpler to detect outliers than traditional methods, and these detected outliers can quantitatively indicate “the degree of outlier”. Using this method, we detect abnormal trading days from OHLCs for S&P500 and FTSA, which are typical and world-wide stock indexes, from the beginning of 2005 to the end of 2015. They are defined as non-steady trading days, and the conditions for becoming the non-steady markets are mined as new knowledge. Applying the mined knowledge to OHLCs from the beginning of 2016 to the end of 2018, we can predict the non-steady trading days during that period. By verifying the predicted content, we show the fact that the appropriate knowledge has been successfully mined and show the effectiveness of the outlier detection method proposed in this paper. Furthermore, we mutually reference and comparatively analyze the results of applying this method to multiple stock indexes. This analyzes possible to visualize when and where social and economic impacts occur and how they propagate through the earth. This is one of the new applications using this method.
Air quality index (AQI) is a non-dimensional index for the description of air quality, and is widely used in air quality management schemes. A novel method for Air Quality Index Forecasting based on Deep Dictionary Learning (AQIF-DDL) and machine vision is proposed in this paper. A sky image is used as the input of the method, and the output is the forecasted AQI value. The deep dictionary learning is employed to automatically extract the sky image features and achieve the AQI forecasting. The idea of learning deeper dictionary levels stemmed from the deep learning is also included to increase the forecasting accuracy and stability. The proposed AQIF-DDL is compared with other deep learning based methods, such as deep belief network, stacked autoencoder and convolutional neural network. The experimental results indicate that the proposed method leads to good performance on AQI forecasting.
Qingbo WANG Gaoqi DOU Ran DENG Jun GAO
The current orthogonal cooperative system (OCS) achieves diversity through the use of relays and the consumption of an additional time slot (TS). To guarantee the orthogonality of the received signal and avoid the mutual interference at the destination, the source has to be mute in the second TS. Consequently, the spectral efficiency (SE) is halved. In this paper, linear constellation precoded orthogonal frequency division multiplexing with index modulation (LCP-OFDM-IM) based OCS is proposed, where the source activates the complementary subcarriers to convey the symbols over two TSs. Hence the source can consecutively transmit information to the destination without the mutual interference. Compared with the current OFDM based OCS, the LCP-OFDM-IM based OCS can achieve a higher SE, since the subcarrier activation patterns (SAPs) can be exploited to convey additional information. Furthermore, the optimal precoder, in the sense of maximizing the minimum Euclidean distance of the symbols conveyed on each subcarrier over two TSs, is provided. Simulation results show the superiority of the LCP-OFDM-IM based OCS over the current OFDM based OCS.
In this letter, we adopt two multi-carrier relay selections, i.e., bulk and per-subcarrier (PS), to the multi-hop decode-and-forward relaying orthogonal frequency-division multiplexing with index modulation (OFDM-IM) system. Particularly, in the form of average outage probability (AOP), the influence of joint selection and non-joint selection acting on the last two hops on the system is analyzed. The closed-form expressions of AOPs and the asymptotic AOPs expressions at high signal-to-noise ratio are given and verified by numerical simulations. The results show that both bulk and PS can achieve full diversity order and that PS can provide additional power gain compared to bulk when JS is used. The theoretical analyses in this letter provide an insight into the combination of OFDM-IM and cooperative communication.
Herein, we analytically derive the effective index and field distribution of the LP01 mode of a step-index N-sided regular-polygonal-core fiber. To do this, we utilize the lowest-order non-anomalous approximation of the π/N expansion. These properties are also calculated numerically and the results are compared the with approximations.
To enhance cover song identification accuracy on a large-size music archive, a song-level feature summarization method is proposed by using multi-scale representation. The chroma n-grams are extracted in multiple scales to cope with both global and local tempo changes. We derive index from the extracted n-grams by clustering to reduce storage and computation for DB search. Experiments on the widely used music datasets confirmed that the proposed method achieves the state-of-the-art accuracy while reducing cost for cover song search.
This paper proposes a method for searching for graphs in the database which are contained as subgraphs by a given query. In the proposed method, the search index does not require any knowledge of the query set or the frequent subgraph patterns. In conventional techniques, enumerating and selecting frequent subgraph patterns is computationally expensive, and the distribution of the query set must be known in advance. Subsequent changes to the query set require the frequent patterns to be selected again and the index to be reconstructed. The proposed method overcomes these difficulties through graph coding, using a tree structured index that contains infrequent subgraph patterns in the shallow part of the tree. By traversing this code tree, we are able to rapidly determine whether multiple graphs in the database contain subgraphs that match the query, producing a powerful pruning or filtering effect. Furthermore, the filtering and verification steps of the graph search can be conducted concurrently, rather than requiring separate algorithms. As the proposed method does not require the frequent subgraph patterns and the query set, it is significantly faster than previous techniques; this independence from the query set also means that there is no need to reconstruct the search index when the query set changes. A series of experiments using a real-world dataset demonstrate the efficiency of the proposed method, achieving a search speed several orders of magnitude faster than the previous best.