Xiaohong JIANG Susumu HORIGUCHI
Available statistical skew models are too conservative in estimating the expected clock skew of a well-balanced H-tree. New closed form expressions are presented for accurately estimating the expected values and the variances of both the clock skew and the largest clock delay of a well-balanced H-tree. Based on the new model, clock period optimizations of wafer scale H-tree clock network are investigated under both conventional clocking mode and pipelined clocking mode. It is found that when the conventional clocking mode is used, clock period optimization of wafer scale H-tree is reduced to the minimization of expected largest clock delay under both area restriction and power restriction. On the other hand, when the pipelined clocking mode is considered, the optimization is reduced to the minimization of expected clock skew under power restriction. The results obtained in this paper are very useful in the optimization design of wafer scale H-tree clock distribution networks.
Masayuki MATSUMOTO Akiyoshi HOSOKAWA Satoru KITAMURA Dai WATANABE Atsushi KAWABATA
This paper introduces a new digital ATC (Automatic Train Control device) system. In the current ATC, the central ATC logic device calculates permissive speed of each blocking section and controls speed of all trains. On the other hand, in the new digital ATC, the central logic controller calculates each position to which a train can move safely, and sends the information on positions to all trains. On each train, the on-board equipment calculates an appropriate braking pattern with the information, and controls velocity of the train. That is, in the new system, the device on each train autonomously calculates permissive speed of that train. These special features realize ideal speed control of each train making full use of its performance for acceleration and deceleration, which in turns allows high-density train operations.
Gianluca SETTI Riccardo ROVATTI Gianluca MAZZINI
In this paper we consider a tensor-based approach to the analytical computation of higher-order expectations of quantized trajectories generated by Piecewise Affine Markov (PWAM) maps. We formally derive closed-form expressions for expectations of trajectories generated by three families of maps, referred to as (n,t)-tailed shifts, (n,t)-broken identities and (n,t,π)-mixing permutations. These families produce expectations with asymptotic exponential decay whose detailed profile is controlled by map design. In the (n,t)-tailed shift case expectations are alternating in sign, in the (n,t)-broken identity case they are constant in sign, and the (n,t,π)-mixing permutation case they follow a dumped periodic trend.
Jose Manuel TABOADA Fernando OBELLEIRO Jose Luis RODRIGUEZ Jose Oscar Rubiños LOPEZ
This paper shows a comparison between several procedures to represent the Physical Optics (PO) current density into a hybrid Moment-Method-Physical-Optics (MM-PO) code. Some numerical results demonstrate that a set of basis functions suitable for the Method of Moments (MM) may be inappropriate to model the PO currents. A new evaluation of the PO operator is proposed. The radiation can be analytically determined and, since it includes a linear interpolation of the phase, it can be applied over large triangular domains. This allows a drastic reduction of the computational cost, maintaining or even improving the level of accuracy.
Biao YOU Wenting SHENG Jun DU Wei ZHANG Mu LU An HU
Magnetic tunnel junctions (MTJ), i.e., structures consisting of two ferromagnetic layers (FM1 and FM2), separated by a very thin insulator barrier (I), have recently attracted attention for their large tunneling magnetoresistance (TMR) which appears when the magnetization of the ferromagnets of FM1 and FM2 changes their relative orientation from parallel to antiparallel in an applied magnetic field. Using an ultrahigh vacuum magnetron sputtering system, a variety of MTJ structures have been explored. Double Hc magnetic tunnel junction, NiFe/Al2O3/Co and FeCo/Al2O3/Co, were fabricated directly using placement of successive contact mask. The tunnel barrier was prepared by in situ plasma oxidation of thin Al layers sputter deposited. For NiFe/Al2O3/Co junctions, the maximum TMR value reaches 5.0% at room temperature, the switching field can be less than 10 Oe and the relative step width is about 30 Oe. The junction resistance changes from hundreds of ohms to hundreds of kilo-ohms and TMR values decrease monotonously with the increase of applied junction voltage bias. For FeCo/Al2O3/Co junctions, TMR values exceeding 7% were obtained at room temperature. It is surprising that an inverse TMR of 4% was observed in FeCo/Al2O3/Co. The physics governing the spin polarization of tunneling electrons remains unclear. Structures, NiFe/FeMn/NiFe/Al2O3/NiFe, in which one of the FM layers is exchange biased with an antiferromagnetic FeMn layer, were also prepared by patterning using optical lithography techniques. Thus, the junctions exhibit two well-defined magnetic states in which the FM layers are either parallel or antiparallel to one another. TMR values of 16% at room temperature were obtained. The switching field is less than 10 Oe and step width is larger than 30 Oe.
Yutaka JITSUMATSU Tetsuo NISHI
We show some results concerning the number of solutions of the equation y+Ax=b (yTx=0, y0, x0) which plays a central role in the dc analysis of transistor circuits. In particular, we give sufficient conditions for the equation to possess exactly 2l (ln) solutions, where n is the dimension of the vector x.
New equivalent characterizations are derived for Schur stability property of real polynomials. They involve a single scalar parameter, which can be regarded as a freedom incorporated in the given polynomials so long as the stability is concerned. Possible applications of the expressions are suggested to the latest results for stability robustness analysis in parameter space. Further, an extension of the characterizations is made to the matrix case, yielding one-parameter expressions of Schur matrices.
This paper presents a novel concept of a Two-Dimensional (2-D) Finite-Difference Time-Domain (FDTD) formulation for the numerical analysis of electromagnetic fields. FDTD method proposed by Yee is widely used for such analysis, although it has an inherent problem that there exist half-cell-length and half-time-step distances between electric and magnetic field components. To dissolve such distances, we begin with the finite-difference approximation of the wave equation, not Maxwell's equations. Employing several approximation techniques, we develop a novel algorithm which can condense all field components to equidistant discrete nodes. The proposed algorithm is evaluated in comparison with several conventional algorithms by computer simulations.
This paper proposes a fast algebraic codebook search for DSVD applications. In this method, the codebook search is simplified by reducing the number of possible position combinations using a mean-based track threshold multiplied by heuristically determined optimum threshold factor. And, to guarantee a complexity requirement of DSVD, the maximum number of searching position combinations is limited to 320. The proposed method reduced computational complexity considerably, compared with G.729 with a slight degradation of SNR. Particularly, it shows better speech quality with lower complexity than G.729A.
Emerging multimedia technologies introduce the prevalent multicast transmission, and the multicast tree is determined using the time-invariant network parameters. This paper addresses the time-varying multicast tree problem and presents path selection heuristics for multicast routing to determine an alternative path for real-time applications. A network is partitioned into the optimal region, the disjoint region, and the edge cutset if a branch of the multicast tree meets the un-guaranteed QoS condition. The path selection heuristics operate during the multicast session phase to efficiently select an alternative routing path containing an edge in the edge cutset to connect the multicast tree again. The source-based heuristics PS-SPT finds the path for minimal source-to-destination delay and the sharing-based heuristics PS-DDMC for minimal total cost. These path selection heuristics can efficiently provide solutions to keep the multicast transmission reliable. Simulation results also show that the proposed heuristics can provide effective good solutions for real-time multicast transmission. PS-SPT can select a path with optimal source-to-destination delay and PS-DDMC can select a path with optimal total cost.
Shuichi ISHIDA Masahiro MIMURA Yoichi SETO
Smart cards and biometrics can be effectively combined for personal authentication over an open network. The combination is achieved as two-step authentication in which the smart card is authenticated based on a public key infrastructure, and the card holder is authenticated using the template stored in the smart card based on the biometric data. The biometric verification has to be executed in the card for security purposes. This paper describes a fingerprint verification method based on a popular biometric verification technique that can be embedded in a smart card. The prototype system that uses this verification method can verify fingerprints in a few seconds by using the data stored on the smart card.
Mohamad A. ALSUNAIDI Tatsuo KUWAYAMA Shigeo KAWASAKI
This paper presents the characterization and validation of a time-domain physical model for illuminated high-frequency active devices and shows the possibility of use of the electromagnetic analysis of FDTD not only for electromagnetic interaction and scattering but also for the device simulation as a good candidate for a microwave simulator. The model is based on Boltzmann's Transport Equation, which accurately accounts for carrier transport in microwave and millimeter wave devices with sub-micrometer gate lengths. Illumination effects are accommodated in the model to represent carrier density changes inside the illuminated device. The simulation results are compared to available experimental records for a typical MESFET for validation purposes. Simulation results show that the microscopic as well as the macroscopic characteristics of the active device are altered by the light energy. This fact makes the model an important tool for the active device design method under illumination control.
Magnetic random access memory (MRAM) possesses the attractive properties of non-volatility, radiation hardness, nondestructive readout, low voltage, high access speed, unlimited read and write endurance and high density. MRAM technology is described for the devices using giant magnetoresistance (GMR) and tunneling magnetoresistance (TMR) materials in this paper. The TMR type MRAM architectures using ferromagnetic tunneling junctions (MTJ) are more attractive for mainstream RAM applications than the GMR type, because the signal of the TMR type is larger than that of the GMR type. A MRAM device with an MTJ plus MOS transistor switch architecture, which can provide large signal-to noise ratio, is detailed. A design of the MTJ element is discussed and the requirements for the junction resistance and the TMR needed for the memory device are demonstrated based on the simple signal voltage calculations. The TMR significantly decreases with increasing bias voltage, which leads to the reduction of the signal voltage for the actual MRAM. A ferromagnetic double tunneling junction is proposed for the high density MRAM application demanding large signal voltage, because of the smaller degradation of the TMR for the bias voltage, compared with that of the conventional single junctions. Recent trials of MRAM fabrication are introduced, which demonstrates high-speed access time. Finally, challenges for the higher bit density MRAM above Gb are discussed, and it is noticed that higher signal voltage, lower power consumption for writing and novel cell designs are needed for the achievement.
Byeong Ha LEE Young-Jae KIM Youngjoo CHUNG Won-Taek HAN Un-Chul PAEK
The analytic expression for the transmission spectrum of cascaded long-period fiber gratings is presented in a closed form. When several identical gratings are cascaded in-series with a regular distance, the transmission spectrum is revealed to have a series of regularly spaced peaks, suitable for multi-channel filters. The analytic solution is obtained by diagonalizing the transfer matrix of each grating unit that is composed of a single grating and a grating-free region between adjacent gratings. The spectrum of the device is simply described with the number of cascaded gratings and a single parameter that has the information of the phase difference between the modes. With the derived equation, the spectral behaviors of the proposed device are investigated. The intensity of each peak can be controlled by adjusting the strength of a single grating. The separation between adjacent gratings determines the spacing between the peaks. The finesse of the peaks can be increased by cascading more gratings. The derived analytic results are compared with the known results of paired gratings and phase-shifted gratings.
Byeong Ha LEE Young-Jae KIM Youngjoo CHUNG Won-Taek HAN Un-Chul PAEK
The analytic expression for the transmission spectrum of cascaded long-period fiber gratings is presented in a closed form. When several identical gratings are cascaded in-series with a regular distance, the transmission spectrum is revealed to have a series of regularly spaced peaks, suitable for multi-channel filters. The analytic solution is obtained by diagonalizing the transfer matrix of each grating unit that is composed of a single grating and a grating-free region between adjacent gratings. The spectrum of the device is simply described with the number of cascaded gratings and a single parameter that has the information of the phase difference between the modes. With the derived equation, the spectral behaviors of the proposed device are investigated. The intensity of each peak can be controlled by adjusting the strength of a single grating. The separation between adjacent gratings determines the spacing between the peaks. The finesse of the peaks can be increased by cascading more gratings. The derived analytic results are compared with the known results of paired gratings and phase-shifted gratings.
Bin-Chul IHM Dong-Jo PARK Young-Hyun KWON
We propose a new intelligent blind source separation algorithm for the mixture of sub-Gaussian and super-Gaussian sources. The algorithm consists of an update equation of the separating matrix and an adjustment equation of nonlinear functions. To verify the validity of the proposed algorithm, we compare the proposed algorithm with extant methods.
Hongyuan CHEN Masato KITAKAMI Eiji FUJIWARA
One of the disadvantages of compressed data is their vulnerability, that is, even a single corrupted bit in compressed data may destroy the decompressed data completely. Therefore, Variable-to-Fixed length Arithmetic Coding, or VFAC, with error detecting capability is discussed. However, implementable error recovery method for compressed data has never been proposed. This paper proposes Burst Error Recovery Variable-to-Fixed length Arithmetic Coding, or BERVFAC, as well as Error Detecting Variable-to-Fixed length Arithmetic Coding, or EDVFAC. Both VFAC schemes achieve VF coding by inserting the internal states of the decompressor into compressed data. The internal states consist of width and offset of the sub-interval corresponding to the decompressed symbol and are also used for error detection. Convolutional operations are applied to encoding and decoding in order to propagate errors and improve error control capability. The proposed EDVFAC and BERVFAC are evaluated by theoretical analysis and computer simulations. The simulation results show that more than 99.99% of errors can be detected by EDVFAC. For BERVFAC, over 99.95% of l-burst errors can be corrected for l 32 and greater than 99.99% of other errors can be detected. The simulation results also show that the time-overhead necessary to decode the BERVFAC is about 12% when 10% of the received words are erroneous.
Jin WANG Michael F. CAGGIANO James G. EVANS Gang WU
Infostations serve a demand for multimedia services with high quality and high data rate. The challenge for Infostation system design is how to download as many information bits when a mobile user drives through an Infostation cell. A variable rate TDMA/TDD radio architecture is chosen for study and experimental implementation because of its flexibility in a multi-user environment. A symbol rate and rate compatible punctured convolutional code controlled adaptive transmission scheme is proposed for the Infostation radio design. Data throughput is analyzed for a mobile user passing through an Infostation cell. The analysis indicates that three data rates at 0.25, 1.0 and 2.0 Mbps achieve greater than 85% of the theoretical throughput while simplifying the implementation. The punctured convolutional code is studied to maximize the Infostation throughput. A recommendation is made to use rate 1/2 coding scheme. An efficient rate adaptation algorithm is proposed and it can track the Rayleigh fading channel well and the capacity loss is negligible in various conditions.
Fuzzy inference abilities were implemented to electromagnetic problems for the first time by the authors. After very successful results of applying the developed fuzzy modeling method to input impedance of a general monopole antenna, in this paper classifying the engineering electromagnetic problems simply, we apply the abilities of the proposed fuzzy inference method to make a qualitative model for transmission lines as a general example for a certain category of problems. The proposed approach starts from observing the problem through the window of human direct understandings and uses some parameters (as calculation base) evaluated basic for modeling process. It is shown that because of using this novel view point, a very simple fuzzy system based on new parameters may model the behavior of a transmission line in general form. The knowledge of each variable can be extracted and saved as simple curves individually, through continuing to make several models considering the desired variable as parameter. Finally, it is shown that the proposed method works even in highly nonuniform transmission line cases without changing in structure and complexity.
Toshimi OKADA Satoshi YAGITANI Isamu NAGANO Tomohiko IMACHI Misaki MUKAINO Yasumasa KASABA Hiroshi MATSUMOTO
A feasibility study has been made of the detection possibility of radio wave noises, i.e., Martian atmospherics, emitted from discharges in the Martian atmosphere during large dust storms. The spacecraft NOZOMI, which was launched in 1998, is to be placed on an elliptic orbit around Mars with perigee of 150-200 km. An onboard-equipment LFA (Low Frequency Plasma wave Analyzer) has capability to measure the low frequency plasma waves in the frequency range from 10 Hz to 32 kHz. In order to know if the LFA can detect the atmospheric radio noises, the propagation characteristics of electromagnetic waves through the Martian ionosphere are studied theoretically by using a full-wave method. The ionosphere is modeled as a magneto-ionic medium based on the recent observations of magnetic anomaly by Mars Global Surveyor spacecraft, and the atmospheric constituent and electron density by Viking observations. Our calculation shows that the waves at frequencies less than a hundred hertz can propagate with low attenuation and reach to altitudes above 200 km in the whistler-mode in the regions of magnetic anomalies in the dayside ionosphere. It is shown that the radio noises emitted from electric discharge in an intense dust storm, with the intensity over -30 dBV/m/Hz at the ionospheric entry point, can be sensed by the LFA. The observational identification of Martian atmospherics will contribute to the physical study of charge/discharge process in the Martian atmosphere.