The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] load(394hit)

21-40hit(394hit)

  • Mantle-Cloak Antenna by Controlling Surface Reactance of Dielectric-Loaded Dipole Antenna

    Thanh Binh NGUYEN  Naobumi MICHISHITA  Hisashi MORISHITA  Teruki MIYAZAKI  Masato TADOKORO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2021/09/24
      Vol:
    E105-B No:3
      Page(s):
    275-284

    We developed a mantle-cloak antenna by controlling the surface reactance of a dielectric-loaded dipole antenna. First, a mantle-cloak antenna with an assumed ideal metasurface sheet was designed, and band rejection characteristics were obtained by controlling the surface reactance of the mantle cloak. The variable range of the frequency spacing between the operating and stopband frequencies of the antenna was clarified by changing the value of the surface reactance. Next, a mantle-cloak antenna that uses vertical strip conductors was designed to clarify the characteristics and operating principle of the antenna. It was confirmed that the stopband frequency was 1130MHz, and the proposed antenna had a 36.3% bandwidth (|S11| ≤ -10dB) from 700 to 1010MHz. By comparing the |S11| characteristics and the input impedance characteristics of the proposed antenna with those of the dielectric-loaded antenna, the effect of the mantle cloak was confirmed. Finally, a prototype of the mantle-cloak antenna that uses vertical strip conductors was developed and measured to validate the simulation results. The measurement results were consistent with the simulation results.

  • Load Balancing with In-Protocol/Wallet-Level Account Assignment in Sharded Blockchains

    Naoya OKANAMI  Ryuya NAKAMURA  Takashi NISHIDE  

     
    INVITED PAPER

      Pubricized:
    2021/11/29
      Vol:
    E105-D No:2
      Page(s):
    205-214

    Sharding is a solution to the blockchain scalability problem. A sharded blockchain divides consensus nodes (validators) into groups called shards and processes transactions separately to improve throughput and latency. In this paper, we analyze the rational behavior of users in account/balance model-based sharded blockchains and identify a phenomenon in which accounts (users' wallets and smart contracts) eventually get concentrated in a few shards, making shard loads unfair. This phenomenon leads to bad user experiences, such as delays in transaction inclusions and increased transaction fees. To solve this problem, we propose two load balancing methods in account/balance model-based sharded blockchains. Both methods perform load balancing by periodically reassigning accounts: in the first method, the blockchain protocol itself performs load balancing and in the second method, wallets perform load balancing. We discuss the pros and cons of the two protocols, and apply the protocols to the execution sharding in Ethereum 2.0, an existing sharding design. Further, we analyze by simulation how the protocols behave to confirm that we can observe smaller transaction delays and fees. As a result, we released the simulation program as “Shargri-La,” a simulator designed for general-purpose user behavior analysis on the execution sharding in Ethereum 2.0.

  • Solving 3D Container Loading Problems Using Physics Simulation for Genetic Algorithm Evaluation

    Shuhei NISHIYAMA  Chonho LEE  Tomohiro MASHITA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/08/06
      Vol:
    E104-D No:11
      Page(s):
    1913-1922

    In this work, an optimization method for the 3D container loading problem with multiple constraints is proposed. The method consists of a genetic algorithm to generate an arrangement of cargo and a fitness evaluation using a physics simulation. The fitness function considers not only the maximization of the container density and fitness value but also several different constraints such as weight, stack-ability, fragility, and orientation of cargo pieces. We employed a container shaking simulation for the fitness evaluation to include constraint effects during loading and transportation. We verified that the proposed method successfully provides the optimal cargo arrangement for small-scale problems with about 10 pieces of cargo.

  • Deployment and Reconfiguration for Balanced 5G Core Network Slices Open Access

    Xin LU  Xiang WANG  Lin PANG  Jiayi LIU  Qinghai YANG  Xingchen SONG  

     
    PAPER-Mobile Information Network and Personal Communications

      Pubricized:
    2021/05/21
      Vol:
    E104-A No:11
      Page(s):
    1629-1643

    Network Slicing (NS) is recognized as a key technology for the 5G network in providing tailored network services towards various types of verticals over a shared physical infrastructure. It offers the flexibility of on-demand provisioning of diverse services based on tenants' requirements in a dynamic environment. In this work, we focus on two important issues related to 5G Core slices: the deployment and the reconfiguration of 5G Core NSs. Firstly, for slice deployment, balancing the workloads of the underlying network is beneficial in mitigating resource fragmentation for accommodating the future unknown network slice requests. In this vein, we formulate a load-balancing oriented 5G Core NS deployment problem through an Integer Linear Program (ILP) formulation. Further, for slice reconfiguration, we propose a reactive strategy to accommodate a rejected NS request by reorganizing the already-deployed NSs. Typically, the NS deployment algorithm is reutilized with slacked physical resources to find out the congested part of the network, due to which the NS is rejected. Then, these congested physical nodes and links are reconfigured by migrating virtual network functions and virtual links, to re-balance the utilization of the whole physical network. To evaluate the performance of deployment and reconfiguration algorithms we proposed, extensive simulations have been conducted. The results show that our deployment algorithm performs better in resource balancing, hence achieves higher acceptance ratio by comparing to existing works. Moreover, our reconfiguration algorithm improves resource utilization by accommodating more NSs in a dynamic environment.

  • Simple Oblivious Routing Method to Balance Load in Network-on-Chip

    Jiao GUAN  Jueping CAI  Ruilian XIE  Yequn WANG  Jinzhi LAI  

     
    LETTER-Computer System

      Pubricized:
    2021/06/30
      Vol:
    E104-D No:10
      Page(s):
    1749-1752

    This letter presents an oblivious and load-balanced routing (OLBR) method without virtual channels for 2D mesh Network-on-chip (NoC). To balance the traffic load of network and avoid deadlock, OLBR divides network nodes into two regions, one region contains the nodes of east and west sides of NoC, in which packets are routed by odd-even turn rule with Y direction preference (OE-YX), and the remaining nodes are divided to the other region, in which packets are routed by odd-even turn rule with alterable priority arbitration (OE-APA). Simulation results show that OLBR's saturation throughput can be improved than related works by 11.73% and OLBR balances the traffic load over entire network.

  • Design and Fabrication of PTFE Substrate Integrated Waveguide Coupler by SR Direct Etching Open Access

    Mitsuyoshi KISHIHARA  Masaya TAKEUCHI  Akinobu YAMAGUCHI  Yuichi UTSUMI  Isao OHTA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2021/03/15
      Vol:
    E104-C No:9
      Page(s):
    446-454

    The microfabrication technique based on synchrotron radiation (SR) direct etching process has recently been applied to construct PTFE microstructures. This paper proposes a PTFE substrate integrated waveguide (PTFE SIW). It is expected that the PTFE SIW contributes to the improvement of the structural strength. A rectangular through-hole is introduced taking the advantage of the SR direct etching process. First, a PTFE SIW for the Q-band is designed. Then, a cruciform 3-dB directional coupler consisting of the PTFE SIW is designed and fabricated by the SR direct etching process. The validity of the PTFE SIW coupler is confirmed by measuring the frequency characteristics of the S-parameters. The mechanical strength of the PTFE SIW and the peeling strength of its Au film are also additionally investigated.

  • Cross-Domain Energy Consumption Prediction via ED-LSTM Networks

    Ye TAO  Fang KONG  Wenjun JU  Hui LI  Ruichun HOU  

     
    PAPER

      Pubricized:
    2021/05/11
      Vol:
    E104-D No:8
      Page(s):
    1204-1213

    As an important type of science and technology service resource, energy consumption data play a vital role in the process of value chain integration between home appliance manufacturers and the state grid. Accurate electricity consumption prediction is essential for demand response programs in smart grid planning. The vast majority of existing prediction algorithms only exploit data belonging to a single domain, i.e., historical electricity load data. However, dependencies and correlations may exist among different domains, such as the regional weather condition and local residential/industrial energy consumption profiles. To take advantage of cross-domain resources, a hybrid energy consumption prediction framework is presented in this paper. This framework combines the long short-term memory model with an encoder-decoder unit (ED-LSTM) to perform sequence-to-sequence forecasting. Extensive experiments are conducted with several of the most commonly used algorithms over integrated cross-domain datasets. The results indicate that the proposed multistep forecasting framework outperforms most of the existing approaches.

  • A Business Service Model of Smart Home Appliances Participating in the Peak Shaving and Valley Filling Based on Cloud Platform

    Mingrui ZHU  Yangjian JI  Wenjun JU  Xinjian GU  Chao LIU  Zhifang XU  

     
    PAPER

      Pubricized:
    2021/04/22
      Vol:
    E104-D No:8
      Page(s):
    1185-1194

    With the development of power market demand response capability, load aggregators play a more important role in the coordination between power grid and users. They have a wealth of user side business data resources related to user demand, load management and equipment operation. By building a business model of business data resource utilization and innovating the content and mode of intelligent power service, it can guide the friendly interaction between power supply, power grid and load, effectively improve the flexibility of power grid regulation, speed up demand response and refine load management. In view of the current situation of insufficient utilization of business resources, low user participation and imperfect business model, this paper analyzes the process of home appliance enterprises participating in peak shaving and valley filling (PSVF) as load aggregators, and expounds the relationship between the participants in the power market; a business service model of smart home appliance participating in PSVF based on cloud platform is put forward; the market value created by home appliance business resources for each participant under the joint action of market-oriented means, information technology and power consumption technology is discussed, and typical business scenarios are listed; taking Haier business resource analysis as an example, the feasibility of the proposed business model in innovating the content and value realization of intelligent power consumption services is proved.

  • Out-of-Bound Signal Demapping for Lattice Reduction-Aided Iterative Linear Receivers in Overloaded MIMO Systems

    Takuya FUJIWARA  Satoshi DENNO  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2021/02/15
      Vol:
    E104-B No:8
      Page(s):
    974-982

    This paper proposes out-of-bound signal demapping for lattice reduction-aided iterative linear receivers in overloaded MIMO channels. While lattice reduction aided linear receivers sometimes output hard-decision signals that are not contained in the modulation constellation, the proposed demapping converts those hard-decision signals into binary digits that can be mapped onto the modulation constellation. Even though the proposed demapping can be implemented with almost no additional complexity, the proposed demapping achieves more gain as the linear reception is iterated. Furthermore, we show that the transmission performance depends on bit mapping in modulations such as the Gray mapping and the natural mapping. The transmission performance is confirmed by computer simulation in a 6 × 2 MIMO system, i.e., the overloading ratio of 3. One of the proposed demapping called “modulo demapping” attains a gain of about 2 dB at the packet error rate (PER) of 10-1 when the 64QAM is applied.

  • Low-Power Fast Partial Firmware Update Technique of On-Chip Flash Memory for Reliable Embedded IoT Microcontroller

    Jisu KWON  Moon Gi SEOK  Daejin PARK  

     
    PAPER

      Pubricized:
    2020/12/08
      Vol:
    E104-C No:6
      Page(s):
    226-236

    IoT devices operate with a battery and have embedded firmware in flash memory. If the embedded firmware is not kept up to date, there is a possibility of problems that cannot be linked with other IoT networks, so it is necessary to maintain the latest firmware with frequent updates. However, because firmware updates require developers and equipment, they consume manpower and time. Additionally, because the device must be active during the update, a low-power operation is not possible due to frequent flash memory access. In addition, if an unexpected interruption occurs during an update, the device is unavailable and requires a reliable update. Therefore, this paper aims to improve the reliability of updates and low-power operation by proposing a technique of performing firmware updates at high speed. In this paper, we propose a technique to update only a part of the firmware stored in nonvolatile flash memory without pre-processing to generate delta files. The firmware is divided into function blocks, and their addresses are collectively managed in a separate area called a function map. When updating the firmware, only the new function block to be updated is transmitted from the host downloader, and the bootloader proceeds with the update using the function block stored in the flash memory. Instead of transmitting the entire new firmware and writing it in the memory, using only function block reduces the amount of resources required for updating. Function-blocks can be called indirectly through a function map, so that the update can be completed by modifying only the function map regardless of the physical location. Our evaluation results show that the proposed technique effectively reduces the time cost, energy consumption, and additional memory usage overhead that can occur when updating firmware.

  • Low Complexity Overloaded MIMO Detection Based on Belief Propagation with MMSE Pre-Cancellation

    Takashi IMAMURA  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/09/09
      Vol:
    E104-B No:3
      Page(s):
    312-319

    In this paper, the application of minimum mean square error (MMSE) pre-cancellation prior to belief propagation (BP) is proposed as a detection scheme for overloaded multiple-input multiple-output (MIMO) systems. In overloaded MIMO systems, the loops in the factor graph degrade the demodulation performance of BP. Therefore, the proposed scheme applies MMSE pre-cancellation prior to BP and reduces the number of loops. Furthermore, it is applied to the selected transmit and receive nodes so that the condition number of an inverse matrix in the MMSE weight matrix is minimized to suppress the residual interference and the noise after MMSE pre-cancellation. Numerical results obtained through computer simulation show that the proposed scheme achieves better bit error rate (BER) performance than BP without MMSE pre-cancellation. The proposed scheme improves the BER performance by 2.9-5.6dB at a BER of 5.0×10-3 compared with conventional BP. Numerical results also show that MMSE pre-cancellation reduces the complexity of BP by a factor of 896 in terms of the number of multiplication operations.

  • 180-Degree Branch Line Coupler Composed of Two Types of Iris-Loaded Waveguides

    Hidenori YUKAWA  Yu USHIJIMA  Naofumi YONEDA  Moriyasu MIYAZAKI  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2020/08/14
      Vol:
    E104-C No:2
      Page(s):
    85-92

    We propose a 180-degree branch line coupler composed of two types of iris-loaded waveguides. The proposed coupler consists of two main transmission lines and branch lines with different electrical lengths. Based on optimal electrical lengths, a 180-degree output phase difference can be achieved without additional phase shifters. The two main lines with different electrical lengths are realized by capacitive and inductive iris-loaded waveguides. The size of the proposed coupler is nearly half that of the conventional 180-degree branch line coupler with additional phase shifters. Thus, the proposed coupler is of advantage with respect to the conventional one. We designed a proposed coupler in the K-band for satellite communication systems. The measurement results demonstrate a reflection of -20 dB, isolation of -20 dB, coupling response of -3.1+0.1 dB/-0.1 dB, and phase differences of 0+0.1 deg/-1.4 deg and -180+0.5 deg/-2.3 deg at a bandwidth of 8% in the K-band.

  • A 26-GHz-Band High Back-Off Efficiency Stacked-FET Power Amplifier IC with Adaptively Controlled Bias and Load Circuits in 45-nm CMOS SOI

    Toshihiko YOSHIMASU  Mengchu FANG  Tsuyoshi SUGIURA  

     
    INVITED PAPER

      Vol:
    E104-A No:2
      Page(s):
    477-483

    This paper presents a 26-GHz-band high back-off efficiency power amplifier (PA) IC with adaptively controlled bias and load circuits in 45-nm CMOS SOI. A 4-stacked-FET is employed to increase the output power and to conquer the low breakdown voltage issue of scaled MOSFET. The adaptive bias circuit is reviewed and the adaptive load circuit which consists of an inverter circuit and transformer-based inductors is described in detail. The measured performance of the PA IC is fully shown in this paper. The PA IC exhibits a saturated output power of 20.5dBm and a peak power-added-efficiency (PAE) as high as 39.4% at a supply voltage of 4.0V. Moreover, the PA IC has exhibited an excellent ITRS FoM of 82.0dB.

  • Sum Rate Maximization of Dense Small Cell Network with Load Balance and Power Transfer among SBSs Open Access

    Xuefei PENG  Xiao XUE  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2020/07/17
      Vol:
    E104-A No:1
      Page(s):
    324-327

    This letter proposes a load balance and power transfer scheme among small cell base stations (SBSs) to maximize the sum rate of small cell network. In the proposed scheme, small cell users (SUEs) are firstly associated with their nearest SBSs, then the overloaded SBSs can be determined. Further, the methods, i.e., Case 1: SUEs of overloaded SBSs are offloaded to their neighbor underloaded SBSs or Case 2: SUEs of overloaded SBSs are served by their original associated SBSs through obtaining power from their nearby SBSs that can provide higher data rate is selected. Finally, numerical simulations demonstrate that the proposed scheme has better performance.

  • Load Balancing for Energy-Harvesting Mobile Edge Computing

    Ping ZHAO  Jiawei TAO  Abdul RAUF  Fengde JIA  Longting XU  

     
    LETTER-Mobile Information Network and Personal Communications

      Pubricized:
    2020/07/27
      Vol:
    E104-A No:1
      Page(s):
    336-342

    With the development of cloud computing, the Mobile Edge Computing has emerged and attracted widespread attentions. In this paper, we focus on the load balancing in MEC with energy harvesting. We first introduce the load balancing in MEC as a problem of minimizing both the energy consumption and queue redundancy. Thereafter, we adapt such a optimization problem to the Lyapunov algorithm and solve this optimization problem. Finally, extensive simulation results validate that the obtained strategy improves the capabilities of MEC systems.

  • Joint Rate Control and Load-Balancing Routing with QoS Guarantee in LEO Satellite Networks

    Xiaoxin QI  Bing ZHANG  Zhiliang QIU  

     
    PAPER-Space Utilization Systems for Communications

      Pubricized:
    2020/06/22
      Vol:
    E103-B No:12
      Page(s):
    1477-1489

    Low Earth Orbit (LEO) satellite networks serve as a powerful complement to the terrestrial networks because of their ability to provide global coverage. In LEO satellite networks, the network is prone to congestion due to several reasons. First, the terrestrial gateways are usually located within a limited region leading to congestion of the nodes near the gateways. Second, routing algorithms that merely adopt shortest paths fail to distribute the traffic uniformly in the network. Finally, the traffic input may exceed the network capacity. Therefore, rate control and load-balancing routing are needed to alleviate network congestion. Moreover, different kinds of traffic have different Quality of Service (QoS) requirements which need to be treated appropriately. In this paper, we investigate joint rate control and load-balancing routing in LEO satellite networks to tackle the problem of network congestion while considering the QoS requirements of different traffic. The joint rate control and routing problem is formulated with the throughput and end-to-end delay requirements of the traffic taken into consideration. Two routing schemes are considered which differ in whether or not different traffic classes can be assigned different paths. For each routing scheme, the joint rate control and routing problem is formulated. A heuristic algorithm based on simulated annealing is proposed to solve the problems. Besides, a snapshot division method is proposed to increase the connectivity of the network and reduce the number of snapshots by merging the links between satellites and gateways. The simulation results show that compared with methods that perform routing and rate control separately, the proposed algorithm improves the overall throughput of the network and provides better QoS guarantees for different traffic classes.

  • Recent Progress on Design Method of Microwave Power Amplifier and Applications for Microwave Heating Open Access

    Toshio ISHIZAKI  Takayuki MATSUMURO  

     
    INVITED PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2020/03/19
      Vol:
    E103-C No:10
      Page(s):
    404-410

    Recently, GaN devices are often adopted in microwave power amplifiers to improve the performances. And many new design methods of microwave power amplifier were proposed. As a result, a high-efficiency and super compact microwave signal source has become easily available. It opens up the way for new microwave heating systems. In this paper, the recent progress on design methods of microwave power amplifier and the applications for microwave heating are described. In the first, a device model of GaN transistor is explained. An equivalent thermal model is introduced into the electrical non-linear equivalent device model. In the second, an active load-pull (ALP) measurement system to design a high-efficiency power amplifier is explained. The principle of the conventional closed-loop ALP system is explained. To avoid the risk of oscillation for the closed-loop ALP system, novel ALP systems are proposed. In the third, a microwave heating system is explained. The heating system monitors the reflection wave. Then, the frequency of the signal source and the phase difference between antennas are controlled to minimize the reflection wave. Absorption efficiency of more than 90% was obtained by the control of frequency and phase. In the last part, applications for a medical instrument is described.

  • A Flexible Overloaded MIMO Receiver with Adaptive Selection of Extended Rotation Matrices

    Satoshi DENNO  Akihiro KITAMOTO  Ryosuke SAWADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/01/17
      Vol:
    E103-B No:7
      Page(s):
    787-795

    This paper proposes a novel flexible receiver with virtual channels for overloaded multiple-input multiple-output (MIMO) channels. The receiver applies extended rotation matrices proposed in the paper for the flexibility. In addition, adaptive selection of the extended rotation matrices is proposed for further performance improvement. We propose two techniques to reduce the computational complexity of the adaptive selection. As a result, the proposed receiver gives us an option to reduce the complexity with a slight decrease in the transmission performance by changing receiver configuration parameters. A computer simulation reveals that the adaptive selection attains a gain of about 3dB at the BER of 10-3.

  • Low Complexity Soft Input Decoding in an Iterative Linear Receiver for Overloaded MIMO Open Access

    Satoshi DENNO  Tsubasa INOUE  Yuta KAWAGUCHI  Takuya FUJIWARA  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/11/06
      Vol:
    E103-B No:5
      Page(s):
    600-608

    This paper proposes a low complexity soft input decoding in an iterative linear receiver for overloaded MIMO. The proposed soft input decoding applies two types of lattice reduction-aided linear filters to estimate log-likelihood ratio (LLR) in order to reduce the computational complexity. A lattice reduction-aided linear with whitening filter is introduced for the LLR estimation in the proposed decoding. The equivalent noise caused by the linear filter is mitigated with the decoder output stream and the LLR is re-estimated after the equivalent noise mitigation. Furthermore, LLR clipping is introduced in the proposed decoding to avoid the performance degradation due to the incorrect LLRs. The performance of the proposed decoding is evaluated by computer simulation. The proposed decoding achieves about 2dB better BER performance than soft decoding with the exhaustive search algorithm, so called the MLD, at the BER of 10-4, even though the complexity of the proposed decoding is 1/10 as small as that of soft decoding with the exhaustive search.

  • Soft Video Uploading for Low-Power Crowdsourced Multi-view Video Streaming

    Than Than NU  Takuya FUJIHASHI  Takashi WATANABE  

     
    PAPER-Network

      Pubricized:
    2019/11/12
      Vol:
    E103-B No:5
      Page(s):
    524-536

    The conventional digital video encoding and transmission are inefficient for crowdsourced multi-view video uploading due to its high power consumption, and undesirable quality degradation in unstable wireless channel. Soft video delivery scheme known as SoftCast skips digital video encoding and transmission to decrease power consumption in video encoding and transmission. In addition, it achieves graceful quality improvement with the improvement of wireless channel quality by directly sending linear-transformed video signals. However, there are two typical issues to apply conventional soft video delivery to crowdsourced multi-view video uploading. First, since soft video delivery has been designed for direct path between each contributor and the access point (AP), it may suffer low video quality when a contributor uploads its video to the AP over unstable direct wireless path. Second, conventional soft video delivery may suffer low video quality due to the redundant transmission of correlated videos because it does not exploit inter-camera correlations existed in multi-view videos. In this paper, we propose a cluster-based redirect video uploading scheme for high-quality and low-power crowdsourced multi-view video streaming. The proposed scheme integrates the four approaches of network clustering, delegate selection, soft video delivery, and four-dimensional discrete consine transform (4D-DCT) to redirectly upload the captured videos to the AP. Specifically, network clustering and delegate selection leverage the redirect path between the contributors and the AP. Soft video delivery removes power-hungry digital encoding and transmission by directly sending frequency-domain coefficients using multi-dimensional DCT and near-analog modulation. 4D-DCT exploits the content correlations between the contributors to reduce redundant transmissions. Evaluation results show that our proposed scheme outperforms the conventional soft video delivery scheme when the channel quality difference between the direct and redirect paths increases. In addition, our scheme outperforms the digital-based video uploading schemes in terms of both video quality and power consumption. For example, the proposed scheme yields graceful quality improvement with the improvement of wireless channel quality, however, the digital-based schemes suffer from sudden quality degradation due to synchronization errors in decoding.

21-40hit(394hit)