The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] load(394hit)

41-60hit(394hit)

  • Cognition-Based Delay Analysis to Determine the Average Minimum Time Limit for Wireless Sensor Communications

    Kedir MAMO BESHER  Juan-Ivan NIETO-HIPÓLITO  Juan de Dios SÁNCHEZ LÓPEZ  Mabel VAZQUEZ-BRISENO  Raymundo BUENROSTRO MARISCAL  

     
    PAPER

      Pubricized:
    2019/12/26
      Vol:
    E103-D No:4
      Page(s):
    789-795

    End-to-end delay, aiming to realize how much time it will take for a traffic load generated by a Mobile Node (MN) to reach Sink Node (SN), is a principal objective of most new trends in a Wireless Sensor Network (WSN). It has a direct link towards understanding the minimum time delay expected where the packet sent by MN can take to be received by SN. Most importantly, knowing the average minimum transmission time limit is a crucial piece of information in determining the future output of the network and the kind of technologies implemented. In this paper, we take network load and transmission delay issues into account in estimating the Average Minimum Time Limit (AMTL) needed for a health operating cognitive WSN. To further estimate the AMTL based on network load, an end-to-end delay analysis mechanism is presented and considers the total delay (service, queue, ACK, and MAC). This work is proposed to answer the AMTL needed before implementing any cognitive based WSN algorithms. Various time intervals and cogitative channel usage with different application payload are used for the result analysis. Through extensive simulations, our mechanism is able to identify the average time intervals needed depending on the load and MN broadcast interval in any cognitive WSN.

  • Memory Efficient Load Balancing for Distributed Large-Scale Volume Rendering Using a Two-Layered Group Structure

    Marcus WALLDEN  Stefano MARKIDIS  Masao OKITA  Fumihiko INO  

     
    PAPER-Computer Graphics

      Pubricized:
    2019/09/09
      Vol:
    E102-D No:12
      Page(s):
    2306-2316

    We propose a novel compositing pipeline and a dynamic load balancing technique for volume rendering which utilizes a two-layered group structure to achieve effective and scalable load balancing. The technique enables each process to render data from non-contiguous regions of the volume with minimal impact on the total render time. We demonstrate the effectiveness of the proposed technique by performing a set of experiments on a modern GPU cluster. The experiments show that using the technique results in up to a 35.7% lower worst-case memory usage as compared to a dynamic k-d tree load balancing technique, whilst simultaneously achieving similar or higher render performance. The proposed technique was also able to lower the amount of transferred data during the load balancing stage by up to 72.2%. The technique has the potential to be used in many scenarios where other dynamic load balancing techniques have proved to be inadequate, such as during large-scale visualization.

  • Precoder and Postcoder Design for Wireless Video Streaming with Overloaded Multiuser MIMO-OFDM Systems

    Koji TASHIRO  Masayuki KUROSAKI  Hiroshi OCHI  

     
    PAPER-Digital Signal Processing

      Vol:
    E102-A No:12
      Page(s):
    1825-1833

    Mobile video traffic is expected to increase explosively because of the proliferating number of Wi-Fi terminals. An overloaded multiple-input multiple-output (MIMO) technique allows the receiver to implement smaller number of antennas than the transmitter in exchange for degradation in video quality and a large amount of computational complexity for postcoding at the receiver side. This paper proposes a novel linear precoder for high-quality video streaming in overloaded multiuser MIMO systems, which protects visually significant portions of a video stream. A low complexity postcoder is also proposed, which detects some of data symbols by linear detection and the others by a prevoting vector cancellation (PVC) approach. It is shown from simulation results that the combination use of the proposed precoder and postcoder achieves higher-quality video streaming to multiple users in a wider range of signal-to-noise ratio (SNR) than a conventional unequal error protection scheme. The proposed precoder attains 40dB in peak signal-to-noise ratio even in poor channel conditions such as the SNR of 12dB. In addition, due to the stepwise acquisition of data symbols by means of linear detection and PVC, the proposed postcoder reduces the number of complex additions by 76% and that of multiplications by 64% compared to the conventional PVC.

  • Progressive Forwarding Disaster Backup among Cloud Datacenters

    Xiaole LI  Hua WANG  Shanwen YI  Linbo ZHAI  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2019/08/19
      Vol:
    E102-D No:11
      Page(s):
    2135-2147

    The periodic disaster backup activity among geographically distributed multiple datacenters consumes huge network resources and therefore imposes a heavy burden on datacenters and transmission links. Previous work aims at least completion time, maximum utility or minimal cost, without consideration of load balance for limited network resources, likely to result in unfair distribution of backup load or significant impact on daily network services. In this paper, we propose a new progressive forwarding disaster backup strategy in the Software Defined Network scenarios to mitigate forwarding burdens on source datacenters and balance backup loads on backup datacenters and transmission links. We construct a new redundancy-aware time-expanded network model to divide time slots according to redundancy requirement, and propose role-switching method over time to utilize forwarding capability of backup datacenters. In every time slot, we leverage two-step optimization algorithm to realize capacity-constrained backup datacenter selection and fair backup load distribution. Simulations results prove that our strategy achieves good performance in load balance under the condition of guaranteeing transmission completion and backup redundancy.

  • XOR Physical Layer Network Coding with Non-Linear Precoding for Quadrature Amplitude Modulations in Bi-Directional MIMO Relay Systems

    Satoshi DENNO  Yuto NAGAI  Yafei HOU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2019/04/17
      Vol:
    E102-B No:10
      Page(s):
    2073-2081

    This paper proposes an XOR physical layer network coding (XOR-PLNC) with non-linear precoding for quadrature amplitude modulations (QAMs) in bi-directional MIMO relay systems. The proposed XOR-PLNC applies power loading in order to improve the transmission performance. The proposed XOR-PLNC introduces a modulus adapted to channel gains. Moreover, the modulus is further reduced in cooperation with modulo operation which the non-linear precoding employs for improvement of transmission power efficiency. The use of the reduced modulus improves the energy efficiency of the signal transmission, which improves the transmission performance in the proposed XOR-PLNC. The performance is evaluated by computer simulations in bi-directional MIMO relay channels with 16QAM to 1024QAM.

  • A Generalized Data Uploading Scheme for D2D-Enhanced Cellular Networks

    Xiaolan LIU  Lisheng MA  Xiaohong JIANG  

     
    PAPER-Network

      Pubricized:
    2019/03/22
      Vol:
    E102-B No:9
      Page(s):
    1914-1923

    This paper investigates data uploading in cellular networks with the consideration of device-to-device (D2D) communications. A generalized data uploading scheme is proposed by leveraging D2D cooperation among the devices to reduce the data uploading time. In this scheme, we extend the conventional schemes on cooperative D2D data uploading for cellular networks to a more general case, which considers D2D cooperation among both the devices with or without uploading data. To motivate D2D cooperation among all available devices, we organize the devices within communication range by offering them rewards to construct multi-hop D2D chains for data uploading. Specifically, we formulate the problem of chain formation among the devices for data uploading as a coalitional game. Based on merge-and-split rules, we develop a coalition formation algorithm to obtain the solution for the formulated coalitional game with convergence on a stable coalitional structure. Finally, extensive numerical results show the effectiveness of our proposed scheme in reducing the average data uploading time.

  • An FSK Inductive-Coupling Transceiver Using 60mV 0.64fJ/bit 0.0016mm2 Load-Modulated Transmitter and LC-Oscillator-Based Receiver in 65nm CMOS for Energy-Budget-Unbalanced Application Open Access

    Kenya HAYASHI  Shigeki ARATA  Ge XU  Shunya MURAKAMI  Cong Dang BUI  Atsuki KOBAYASHI  Kiichi NIITSU  

     
    BRIEF PAPER

      Vol:
    E102-C No:7
      Page(s):
    585-589

    This work presents an FSK inductive-coupling transceiver using a load-modulated transmitter and LC-oscillator-based receiver for energy-budget-unbalanced applications. By introducing the time-domain load modulated transmitter for FSK instead of the conventional current-driven scheme, energy reduction of the transmitter side is possible. For verifying the proposed scheme, a test chip was fabricated in 65nm CMOS, and two chips were stacked for verifying the inter-chip communication. The measurement results show 0.64fJ/bit transmitter power consumption while its input voltage is 60mV, and the communication distance is 150μm. The footprint of the transmitter is 0.0016mm2.

  • A Portable Load Balancer with ECMP Redundancy for Container Clusters

    Kimitoshi TAKAHASHI  Kento AIDA  Tomoya TANJO  Jingtao SUN  Kazushige SAGA  

     
    PAPER

      Pubricized:
    2019/02/27
      Vol:
    E102-D No:5
      Page(s):
    974-987

    Linux container technology and clusters of the containers are expected to make web services consisting of multiple web servers and a load balancer portable, and thus realize easy migration of web services across the different cloud providers and on-premise datacenters. This prevents service to be locked-in a single cloud provider or a single location and enables users to meet their business needs, e.g., preparing for a natural disaster. However existing container management systems lack the generic implementation to route the traffic from the internet into the web service consisting of container clusters. For example, Kubernetes, which is one of the most popular container management systems, is heavily dependent on cloud load balancers. If users use unsupported cloud providers or on-premise datacenters, it is up to users to route the traffic into their cluster while keeping the redundancy and scalability. This means that users could easily be locked-in the major cloud providers including GCP, AWS, and Azure. In this paper, we propose an architecture for a group of containerized load balancers with ECMP redundancy. We containerize Linux ipvs and exabgp, and then implement an experimental system using standard Linux boxes and open source software. We also reveal that our proposed system properly route the traffics with redundancy. Our proposed load balancers are usable even if the infrastructure does not have supported load balancers by Kubernetes and thus free users from lock-ins.

  • Load Balancing Using Load Threshold Adjustment and Incentive Mechanism in Structured P2P Systems

    Kyoungsoo BOK  Jonghyeon YOON  Jongtae LIM  Jaesoo YOO  

     
    LETTER-Information Network

      Pubricized:
    2019/02/18
      Vol:
    E102-D No:5
      Page(s):
    1093-1096

    In this paper, we propose a new dynamic load balancing scheme according to load threshold adjustment and incentives mechanism. The proposed scheme adjusts the load threshold of a node by comparing it with a mean threshold of adjacent nodes, thereby increasing the threshold evenly. We also assign the incentives and penalties to each node through a comparison of the mean threshold of all the nodes in order to increase autonomous load balancing participation.

  • A Power-Efficient Pulse-VCO for Chip-Scale Atomic Clock

    Haosheng ZHANG  Aravind THARAYIL NARAYANAN  Hans HERDIAN  Bangan LIU  Rui WU  Atsushi SHIRANE  Kenichi OKADA  

     
    PAPER

      Vol:
    E102-C No:4
      Page(s):
    276-286

    This paper presents a high power efficient pulse VCO with tail-filter for the chip-scale atomic clock (CSAC) application. The stringent power and clock stability specifications of next-generation CSAC demand a VCO with ultra-low power consumption and low phase noise. The proposed VCO architecture aims for the high power efficiency, while further reducing the phase noise using tail filtering technique. The VCO has been implemented in a standard 45nm SOI technology for validation. At an oscillation frequency of 5.0GHz, the proposed VCO achieves a phase noise of -120dBc/Hz at 1MHz offset, while consuming 1.35mW. This translates into an FoM of -191dBc/Hz.

  • A Dynamic-Clustering Backup Scheme for High-Availability Distributed File Sharing Systems

    Hoai Son NGUYEN   Dinh Nghia NGUYEN  Shinji SUGAWARA  

     
    PAPER-Network

      Pubricized:
    2018/09/10
      Vol:
    E102-B No:3
      Page(s):
    545-556

    DHT routing algorithms can provide efficient mechanisms for resource placement and lookup for distributed file sharing systems. However, we must still deal with irregular and frequent join/leave of nodes and the problem of load unbalancing between nodes in DHT-based file sharing systems. This paper presents an efficient file backup scheme based on dynamic DHT key space clustering in order to guarantee data availability and support load balancing. The main idea of our method is to dynamically divide the DHT network into a number of clusters, each of which locally stores and maintains data chunks of data files to guarantee the data availability of user data files even when node churn occurs. Further, high-capacity nodes in clusters are selected as backup nodes to achieve adequate load balancing. Simulation results demonstrate the superior effectiveness of the proposed scheme over other file replication schemes.

  • Evasive Malicious Website Detection by Leveraging Redirection Subgraph Similarities

    Toshiki SHIBAHARA  Yuta TAKATA  Mitsuaki AKIYAMA  Takeshi YAGI  Kunio HATO  Masayuki MURATA  

     
    PAPER

      Pubricized:
    2018/10/30
      Vol:
    E102-D No:3
      Page(s):
    430-443

    Many users are exposed to threats of drive-by download attacks through the Web. Attackers compromise vulnerable websites discovered by search engines and redirect clients to malicious websites created with exploit kits. Security researchers and vendors have tried to prevent the attacks by detecting malicious data, i.e., malicious URLs, web content, and redirections. However, attackers conceal parts of malicious data with evasion techniques to circumvent detection systems. In this paper, we propose a system for detecting malicious websites without collecting all malicious data. Even if we cannot observe parts of malicious data, we can always observe compromised websites. Since vulnerable websites are discovered by search engines, compromised websites have similar traits. Therefore, we built a classifier by leveraging not only malicious but also compromised websites. More precisely, we convert all websites observed at the time of access into a redirection graph and classify it by integrating similarities between its subgraphs and redirection subgraphs shared across malicious, benign, and compromised websites. As a result of evaluating our system with crawling data of 455,860 websites, we found that the system achieved a 91.7% true positive rate for malicious websites containing exploit URLs at a low false positive rate of 0.1%. Moreover, it detected 143 more evasive malicious websites than the conventional content-based system.

  • ATSMF: Automated Tiered Storage with Fast Memory and Slow Flash Storage to Improve Response Time with Concentrated Input-Output (IO) Workloads

    Kazuichi OE  Mitsuru SATO  Takeshi NANRI  

     
    PAPER-Memory Devices

      Pubricized:
    2018/09/18
      Vol:
    E101-D No:12
      Page(s):
    2889-2901

    The response times of solid state drives (SSDs) have decreased dramatically due to the growing use of non-volatile memory express (NVMe) devices. Such devices have response times of less than 100 micro seconds on average. The response times of all-flash-array systems have also decreased dramatically through the use of NVMe SSDs. However, there are applications, particularly virtual desktop infrastructure and in-memory database systems, that require storage systems with even shorter response times. Their workloads tend to contain many input-output (IO) concentrations, which are aggregations of IO accesses. They target narrow regions of the storage volume and can continue for up to an hour. These narrow regions occupy a few percent of the logical unit number capacity, are the target of most IO accesses, and appear at unpredictable logical block addresses. To drastically reduce the response times for such workloads, we developed an automated tiered storage system called “automated tiered storage with fast memory and slow flash storage” (ATSMF) in which the data in targeted regions are migrated between storage devices depending on the predicted remaining duration of the concentration. The assumed environment is a server with non-volatile memory and directly attached SSDs, with the user applications executed on the server as this reduces the average response time. Our system predicts the effect of migration by using the previously monitored values of the increase in response time during migration and the change in response time after migration. These values are consistent for each type of workload if the system is built using both non-volatile memory and SSDs. In particular, the system predicts the remaining duration of an IO concentration, calculates the expected response-time increase during migration and the expected response-time decrease after migration, and migrates the data in the targeted regions if the sum of response-time decrease after migration exceeds the sum of response-time increase during migration. Experimental results indicate that ATSMF is at least 20% faster than flash storage only and that its memory access ratio is more than 50%.

  • Event De-Noising Convolutional Neural Network for Detecting Malicious URL Sequences from Proxy Logs

    Toshiki SHIBAHARA  Kohei YAMANISHI  Yuta TAKATA  Daiki CHIBA  Taiga HOKAGUCHI  Mitsuaki AKIYAMA  Takeshi YAGI  Yuichi OHSITA  Masayuki MURATA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E101-A No:12
      Page(s):
    2149-2161

    The number of infected hosts on enterprise networks has been increased by drive-by download attacks. In these attacks, users of compromised popular websites are redirected toward websites that exploit vulnerabilities of a browser and its plugins. To prevent damage, detection of infected hosts on the basis of proxy logs rather than blacklist-based filtering has started to be researched. This is because blacklists have become difficult to create due to the short lifetime of malicious domains and concealment of exploit code. To detect accesses to malicious websites from proxy logs, we propose a system for detecting malicious URL sequences on the basis of three key ideas: focusing on sequences of URLs that include artifacts of malicious redirections, designing new features related to software other than browsers, and generating new training data with data augmentation. To find an effective approach for classifying URL sequences, we compared three approaches: an individual-based approach, a convolutional neural network (CNN), and our new event de-noising CNN (EDCNN). Our EDCNN reduces the negative effects of benign URLs redirected from compromised websites included in malicious URL sequences. Evaluation results show that only our EDCNN with proposed features and data augmentation achieved a practical classification performance: a true positive rate of 99.1%, and a false positive rate of 3.4%.

  • Experimental Evaluation of Maximum Achievable Efficiency for Multiple-Receiver Inductive Power Transfer Systems

    Reona SUGIYAMA  Quang-Thang DUONG  Minoru OKADA  

     
    PAPER-Analog Signal Processing

      Vol:
    E101-A No:11
      Page(s):
    1861-1868

    Optimal loads and maximum achievable efficiency for multiple-receiver inductive power transfer (IPT) system have been formulated by theoretical studies in literatures. This paper presents extended analysis on system behavior at optimal load condition and extensive S-parameter evaluation to validate the formulas. Our results confirm that at the optimal load condition, the system is in a resonance state; the impact of cross-coupling among receivers is completely mitigated; and the efficiency reaches its maximum expressed by an efficiency angle tangent, in an manner analogous to the well-known kQ-theory for single-receiver IPT. Our contributions do not lie in practical applications of multiple-receiver IPT but in establishing principles for design and benchmarking the system.

  • A Deep Reinforcement Learning Based Approach for Cost- and Energy-Aware Multi-Flow Mobile Data Offloading

    Cheng ZHANG  Zhi LIU  Bo GU  Kyoko YAMORI  Yoshiaki TANAKA  

     
    PAPER

      Pubricized:
    2018/01/22
      Vol:
    E101-B No:7
      Page(s):
    1625-1634

    With the rapid increase in demand for mobile data, mobile network operators are trying to expand wireless network capacity by deploying wireless local area network (LAN) hotspots on to which they can offload their mobile traffic. However, these network-centric methods usually do not fulfill the interests of mobile users (MUs). Taking into consideration many issues such as different applications' deadlines, monetary cost and energy consumption, how the MU decides whether to offload their traffic to a complementary wireless LAN is an important issue. Previous studies assume the MU's mobility pattern is known in advance, which is not always true. In this paper, we study the MU's policy to minimize his monetary cost and energy consumption without known MU mobility pattern. We propose to use a kind of reinforcement learning technique called deep Q-network (DQN) for MU to learn the optimal offloading policy from past experiences. In the proposed DQN based offloading algorithm, MU's mobility pattern is no longer needed. Furthermore, MU's state of remaining data is directly fed into the convolution neural network in DQN without discretization. Therefore, not only does the discretization error present in previous work disappear, but also it makes the proposed algorithm has the ability to generalize the past experiences, which is especially effective when the number of states is large. Extensive simulations are conducted to validate our proposed offloading algorithms.

  • On the Feasibility of an Adaptive Movable Access Point System in a Static Indoor WLAN Environment

    Tomoki MURAKAMI  Shingo OKA  Yasushi TAKATORI  Masato MIZOGUCHI  Fumiaki MAEHARA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/01/10
      Vol:
    E101-B No:7
      Page(s):
    1693-1700

    This paper investigates an adaptive movable access point (AMAP) system and explores its feasibility in a static indoor classroom environment with an applied wireless local area network (WLAN) system. In the AMAP system, the positions of multiple access points (APs) are adaptively moved in accordance with clustered user groups, which ensures effective coverage for non-uniform user distributions over the target area. This enhances the signal to interference and noise power ratio (SINR) performance. In order to derive the appropriate AP positions, we utilize the k-means method in the AMAP system. To accurately estimate the position of each user within the target area for user clustering, we use the general methods of received signal strength indicator (RSSI) or time of arrival (ToA), measured by the WLAN systems. To clarify the basic effectiveness of the AMAP system, we first evaluate the SINR performance of the AMAP system and a conventional fixed-position AP system with equal intervals using computer simulations. Moreover, we demonstrate the quantitative improvement of the SINR performance by analyzing the ToA and RSSI data measured in an indoor classroom environment in order to clarify the feasibility of the AMAP system.

  • Hybrid Message Logging Protocol with Little Overhead for Two-Level Hierarchical and Distributed Architectures

    Jinho AHN  

     
    LETTER-Dependable Computing

      Pubricized:
    2018/03/01
      Vol:
    E101-D No:6
      Page(s):
    1699-1702

    In this paper, we present a hybrid message logging protocol consisting of three modules for two-level hierarchical and distributed architectures to address the drawbacks of sender-based message logging. The first module reduces the number of in-group control messages and, the rest, the number of inter-group control messages while localizing recovery. In addition, it can distribute the load of logging and keeping inter-group messages to group members as evenly as possible. The simulation results show the proposed protocol considerably outperforms the traditional protocol in terms of message logging overhead and scalability.

  • Horizontal Partition for Scalable Control in Software-Defined Data Center Networks

    Shaojun ZHANG  Julong LAN  Chao QI  Penghao SUN  

     
    LETTER-Information Network

      Pubricized:
    2018/03/07
      Vol:
    E101-D No:6
      Page(s):
    1691-1693

    Distributed control plane architecture has been employed in software-defined data center networks to improve the scalability of control plane. However, since the flow space is partitioned by assigning switches to different controllers, the network topology is also partitioned and the rule setup process has to invoke multiple controllers. Besides, the control load balancing based on switch migration is heavyweight. In this paper, we propose a lightweight load partition method which decouples the flow space from the network topology. The flow space is partitioned with hosts rather than switches as carriers, which supports fine-grained and lightweight load balancing. Moreover, the switches are no longer needed to be assigned to different controllers and we keep all of them controlled by each controller, thus each flow request can be processed by exactly one controller in a centralized style. Evaluations show that our scheme reduces rule setup costs and achieves lightweight load balancing.

  • Fabrication of Integrated PTFE-Filled Waveguide Butler Matrix for Short Millimeter-Wave by SR Direct Etching

    Mitsuyoshi KISHIHARA  Masaya TAKEUCHI  Akinobu YAMAGUCHI  Yuichi UTSUMI  Isao OHTA  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E101-C No:6
      Page(s):
    416-422

    The microfabrication technique based on SR (Synchrotron Radiation) direct etching process has recently been applied to construct PTFE microstructures. This paper attempts to fabricate an integrated PTFE-filled waveguide Butler matrix for short millimeter-wave by SR direct etching. First, a cruciform 3-dB directional coupler and an intersection circuit (0-dB coupler) are designed at 180 GHz. Then, a 4×4 Butler matrix with horn antennas is designed and fabricated. Finally, the measured radiation patterns of the Butler matrix are shown.

41-60hit(394hit)