The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] magnet(669hit)

61-80hit(669hit)

  • Equivalent Circuit of Yee's Cells and Its Application to Mixed Electromagnetic and Circuit Simulations

    Yuichi TANJI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E101-C No:9
      Page(s):
    703-710

    An equivalent circuit of Yee's cells is proposed for mixed electromagnetic and circuit simulations. Using the equivalent circuit, a mixed electromagnetic and circuit simulator can be developed, in which the electromagnetic field and circuit responses are simultaneously analyzed. Representing the electromagnetic system as a circuit, active and passive device models in a circuit simulator can be used for the mixed simulations without any modifications. Hence, the propose method is very useful for designing various electronic systems. To evaluate the mixed simulations with the equivalent circuit, two implementations with shared or distributed memory computer system are presented. In the numerical examples, we evaluate the performances of the prototype simulators to demonstrate the effectiveness.

  • Arc Duration and Dwell Time of Break Arcs Magnetically Blown-out in Nitrogen or Air in a 450VDC/10A Resistive Circuit

    Akinori ISHIHARA  Junya SEKIKAWA  

     
    BRIEF PAPER

      Vol:
    E101-C No:9
      Page(s):
    699-702

    Electrical contacts are separated at constant speed and break arcs are generated in nitrogen or air in a 200V-450VDC/10A resistive circuit. The break arcs are extinguished by magnetic blow-out. Arc duration for the silver and copper contact pairs is investigated for each supply voltage. Following results are shown. The arc duration for Cu contacts in nitrogen is the shortest. For Cu contacts, the arc dwell time in air was considerably longer than that of nitrogen. For Ag contacts, the arc duration in nitrogen was almost the same as that in air.

  • Convergence Properties of Iterative Full-Wave Electromagnetic FEM Analyses with Node Block Preconditioners

    Toshio MURAYAMA  Akira MUTO  Amane TAKEI  

     
    PAPER

      Vol:
    E101-C No:8
      Page(s):
    612-619

    In this paper we report the convergence acceleration effect of the extended node patch preconditioner for the iterative full-wave electromagnetic finite element method with more than ten million degrees of freedom. The preconditioner, which is categorized into the multiplicative Schwarz scheme, effectively works with conventional numerical iterative matrix solving methods on a parallel computer. We examined the convergence properties of the preconditioner combined with the COCG, COCR and GMRES algorithms for the analysis domain encompassed by absorbing boundary conditions (ABC) such as perfectly matched layers (PML). In those analyses the properties of the convergence are investigated numerically by sweeping frequency range and the number of PMLs. Memory-efficient nature of the preconditioner is numerically confirmed through the experiments and upper bounds of the required memory size are theoretically proved. Finally it is demonstrated that this extended node patch preconditioner with GMRES algorithm works well with the problems up to one hundred million degrees of freedom.

  • Dielectric Measurement in Liquids Using an Estimation Equation without Short Termination via the Cut-Off Circular Waveguide Reflection Method

    Kouji SHIBATA  

     
    PAPER

      Vol:
    E101-C No:8
      Page(s):
    627-636

    In this study, a theory for estimating the dielectric properties for unknown materials from three reference materials without using a short condition was developed. Specifically, the relationships linking the S parameter, electrostatic capacity, the measurement instrument and the jig were determined for four equivalent circuits with three reference materials and an unknown material inserted into the jig. An equation for estimation of complex permittivity from three reference materials without short termination was thus derived. The formula's accuracy was then numerically verified for cases in which values indicating the dielectric properties of the reference materials and the actual material differed significantly, thereby verifying the effectiveness of the proposed method. Next, it was also found that dielectric constant could be correctly determined even when the observation plane was moved to the SOL calibration plane on the generator side. The dielectric properties of various liquids in the 0.50, 1.0 and 2.5 GHz bands as measured using the proposed method were then compared with corresponding conventional-method values. Finally, the validity of the proposed method was also indicated by measurement values showing the frequency characteristics of dielectric properties at frequencies ranging from 0.50 to 3.0 GHz.

  • A Study on Dependency of Transmission Loss of Shielded-Flexible Printed Circuits for Differential Signaling

    Yoshiki KAYANO  Hiroshi INOUE  

     
    BRIEF PAPER

      Vol:
    E101-C No:8
      Page(s):
    660-663

    In this paper, dependency of transmission loss of shielded-flexible printed circuits (FPC) for differential-signaling on thickness of conductive shield is studied by numerical modeling based on an equivalent circuit model compared with the experimental results. Especially, the transmission loss due to the thin conductive shield is focused. The insufficient shielding performance for near magnetic field decreases the resistance due to the thin conductive shield. It is shown that the resistance due to the thin conductive shield at lower frequencies is smaller than that in the “thick conductive shield” case.

  • PdEr-Silicide Formation and Contact Resistivity Reduction to n-Si(100) Realized by Dopant Segregation Process

    Shun-ichiro OHMI  Yuya TSUKAMOTO  Weiguang ZUO  Yasushi MASAHIRO  

     
    PAPER

      Vol:
    E101-C No:5
      Page(s):
    311-316

    In this paper, we have investigated the PdEr-silicide formation utilizing a developed PdEr-alloy target for sputtering, and evaluated the contact resistivity of PdEr-silicide layer formed on n-Si(100) by dopant segregation process for the first time. Pd2Si and ErSi2 have same hexagonal structure, while the Schottky barrier height for electron (Φbn) is different as 0.75 eV and 0.28 eV, respectively. A 20 nm-thick PdEr-alloy layer was deposited on the n-Si(100) substrates utilizing a developed PdEr-alloy target by the RF magnetron sputtering at room temperature. Then, 10 nm-thick TiN encapsulating layer was in-situ deposited at room temperature. Next, silicidation was carried out by the RTA at 500 for 5 min in N2/4.9%H2 followed by the selective etching. From the J-V characteristics of fabricated Schottky diode, qΦbn was reduced from 0.75 eV of Pd2Si to 0.43 eV of PdEr-silicide. Furthermore, 4.0x10-8Ωcm2 was extracted for the PdEr-silicide to n-Si(100) by the dopant segregation process.

  • Numerical Analysis of a Tunable Magnetized Plasma Loop Antenna

    Mohammadreza GHADERI  Gholamreza MORADI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/10/06
      Vol:
    E101-B No:4
      Page(s):
    1055-1060

    In this study, a plasma loop tube is presented as a tunable VHF-UHF band plasma antenna. In plasma medium, wave radiation mechanism is due to ionized gas instead of metal. Meanwhile, the most important advantage of plasma elements is electronic tunability rather than the rigid and fixed features of metals. Here, we employ an external magnetic field as a background to affect the plasma without any shape, gas or source manipulation. Finite difference time domain (FDTD) is performed for plasma antenna analysis. The FDTD formulation should be adapted to fluid modeling of plasma in the anisotropic zone in the presence of an external magnetic field. The bandwidth coverage of 700MHz is obtained by designing correctly. Parametric study in return loss, gain and radiation pattern are studied here and other new points are presented as well.

  • Passive-Filter-Configuration-Based Reduction of Up-to-Several-Hundred-MHz EMI Noises in H-Bridge PWM Micro-Stepping Motor Driver Circuits

    Keonil KANG  Kyung-Young JUNG  Sang Won NAM  

     
    PAPER-Electromagnetic Theory

      Vol:
    E101-C No:2
      Page(s):
    104-111

    Recently, H-bridge pulse width modulation (PWM) micro-stepping motor drivers have been widely used for 3-D printers, robots, and medical instruments. Differently from a simple PWM motor driver circuit, the H-bridge PWM micro-stepping motor driver circuit can generate radio frequency (RF) electromagnetic interference (EMI) noises of up to several hundred MHz frequencies, due to digital interface circuits and a high-performance CPU. For medical instrument systems, the minimization of EMI noises can assure operating safety and greatly reduce the chance of malfunction between instruments. This work proposes a passive-filter configuration-based circuit design for reducing up-to-several-hundred-MHz EMI noises generated from the H-bridge PWM micro-stepping motor driver circuit. More specifically, the proposed RF EMI reduction approach consists of proper passive filter design, shielding in motor wires, and common ground design in the print circuit board. The proposed passive filter configuration design is validated through the overall reduction of EMI noises at RF band. Finally, the proposed EMI reduction approach is tested experientially through a prototype and about 16 dB average reduction of RF EMI noises is demonstrated.

  • Colored Magnetic Janus Particles Open Access

    Hiroshi YABU  

     
    INVITED PAPER

      Vol:
    E100-C No:11
      Page(s):
    955-957

    The aim of this research is realizing a high resolution and a fast color switching of electronic papers. In this report, we realized basis of electric papers comprised on magnetic Janus particles was established. Colored and magnetic Janus particles were successfully prepared, and magnetic Janus particles were introduced into honeycomb matrices. Introduced magnetic Janus particles quickly respond to an external magnetic field.

  • Magnetic Anomaly Detection with Empirical Mode Decomposition Trend Filtering

    Han ZHOU  Zhongming PAN  Zhuohang ZHANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:11
      Page(s):
    2503-2506

    Magnetic Anomaly Detection (MAD) is a passive method for the detection of ferromagnetic objects. Currently, the performance of a MAD system is limited by the magnetic background noise that is non-stationary and shows self-similarity and long-range correlation. In this paper, we propose an empirical mode decomposition (EMD) trend filtering based energy detector for adaptively detecting the magnetic anomaly signal from the background noise. The input data is first detrended adaptively with the energy-ratio trend filtering approach. Then, the magnetic anomaly signal is detected using an energy detector. The proposed detector does not need any a priori knowledge about the target or assumptions regarding the background noise. Experiments also prove that the proposed detector shows a more stable performance than the existing undecimated discrete wavelet transform (UDWT) based energy detector.

  • Experimental Study on a 5.8 GHz Power-Variable Phase-Controlled Magnetron

    Bo YANG  Tomohiko MITANI  Naoki SHINOHARA  

     
    PAPER

      Vol:
    E100-C No:10
      Page(s):
    901-907

    We developed a 5.8 GHz power-variable phase-controlled magnetron (PVPCM) which controls the phase of magnetron output by a phase shifter and controls the power by the anode current of the magnetron. This method is different from the previous 2.45 GHz phase-controlled magnetron which utilizes an injection method and a phase locked loop by the anode current, since the frequency of 5.8 GHz magnetron hardly changes with the anode current. Our experiments show that the developed 5.8 GHz PVPCM had a variable output power with 1% power stability from 160 W to 329 W, the phase accuracy was nearly ±1°, and the response time was less than 100 µs. Stable output power, high phase-controlled accuracy, and fast response speed microwave sources based on the PVPCMs are suitable for phased array system for wireless power transfer.

  • Transient Analysis of Anisotropic Dielectrics and Ferromagnetic Materials Based on Unconditionally Stable Perfectly-Matched-Layer (PML) Complex-Envelope (CE) Finite-Difference Time-Domain (FDTD) Method

    Sang-Gyu HA  Jeahoon CHO  Kyung-Young JUNG  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/03/14
      Vol:
    E100-B No:10
      Page(s):
    1879-1883

    Anisotropic dielectrics and ferromagnetic materials are widely used in dispersion-engineered metamaterials. For example, nonreciprocal magnetic photonic crystals (MPhCs) are periodic structures whose unit cell is composed of two misaligned anisotropic dielectric layers and one ferromagnetic layer and they have extraordinary characteristics such as wave slowdown and field amplitude increase. We develop an unconditionally stable complex-envelop alternating-direction-implicit finite-difference time-domain method (CE-ADI-FDTD) suitable for the transient analysis of anisotropic dielectrics and ferromagnetic materials. In the proposed algorithm, the perfectly-matched-layer (PML) is straightforwardly incorporated in Maxwell's curl equations. Numerical examples show that the proposed PML-CE-ADI-FDTD method can reduce the CPU time significantly for the transient analysis of anisotropic dielectrics and ferromagnetic materials while maintaining computational accuracy.

  • Simplification of Liquid Dielectric Property Evaluation Based on Comparison with Reference Materials and Electromagnetic Analysis Using the Cut-Off Waveguide Reflection Method

    Kouji SHIBATA  Masaki KOBAYASHI  

     
    PAPER

      Vol:
    E100-C No:10
      Page(s):
    908-917

    In this study, expressions were compared with reference material using the coaxial feed-type open-ended cut-off circular waveguide reflection method to support simple and instantaneous evaluation of dielectric constants in small amounts of scarce liquids over a broad frequency range. S11 values were determined via electromagnetic analysis for individual jig structure conditions and dielectric property values without actual S11 measurement under the condition that the tip of the measurement jig with open and short-ended conditions and with the test material inserted. Next, information on the relationships linking jig structure, dielectric properties and S11 properties was stored on a database to simplify the procedure and improve accuracy in reference material evaluation. The accuracy of the estimation formula was first theoretically verified for cases in which values indicating the dielectric properties of the reference material and the actual material differed significantly to verify the effectiveness of the proposed method. The results indicated that dielectric property values for various liquids measured at 0.5 and 1.0GHz using the proposed method corresponded closely to those obtained using the method previously proposed by the authors. The effectiveness of the proposed method was evaluated by determining the dielectric properties of certain liquids at octave-range continuous frequencies between 0.5 and 1.0GHz based on interpolation from limited data of several frequencies. The results indicated that the approach enables quicker and easier measurement to establish the complex permittivity of liquids over a broad frequency range than the previous method.

  • High Precision Deep Sea Geomagnetic Data Sampling and Recovery with Three-Dimensional Compressive Sensing

    Chao ZHANG  Yufei ZHAO  

     
    LETTER

      Vol:
    E100-A No:9
      Page(s):
    1760-1762

    Autonomous Underwater Vehicle (AUV) can be utilized to directly measure the geomagnetic map in deep sea. The traditional map interpolation algorithms based on sampling continuation above the sea level yield low resolution and accuracy, which restricts the applications such as the deep sea geomagnetic positioning, navigation, searching and surveillance, etc. In this letter, we propose a Three-Dimensional (3D) Compressive Sensing (CS) algorithm in terms of the real trajectory of AUV which can be optimized with the required accuracy. The geomagnetic map recovered with the CS algorithm shows high precision compared with traditional interpolation schemes, by which the magnetic positioning accuracy can be greatly improved.

  • Establishment of EMC Research in Japan and its Future Prospects Open Access

    Osamu FUJIWARA  

     
    INVITED SURVEY PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2017/03/27
      Vol:
    E100-B No:9
      Page(s):
    1623-1632

    Systematic research on electromagnetic compatibility (EMC) in Japan started in 1977 by the establishment of a technical committee on “environmental electromagnetic engineering” named EMCJ, which was founded both in the Institute of Electronics and Communication Engineers or the present IEICE (Institute of Electronics, Information and Communication Engineers) and in the Institute of Electrical Engineers of Japan or the IEEJ. The research activities have been continued as the basic field of interdisciplinary study to harmonize even in the electromagnetic (EM) environment where radio waves provide intolerable EM disturbances to electronic equipment and to that environment itself. The subjects and their outcomes which the EMCJ has dealt with during about 40 years from the EMCJ establishment include the evaluation of EM environment, EMC of electric and electronic equipment, and EMC of biological effects involving bioelectromagnetics and so on. In this paper, the establishment history and structure of the EMCJ are reviewed along with the change in activities, and topics of the technical reports presented at EMCJ meetings from 2006 to 2016 are surveyed. In addition, internationalization and its related campaign are presented in conjunction with the EMCJ research activities, and the status quo of the EMCJ under the IEICE is also discussed along with the prospects.

  • Effect of Magnetic Blow-Out and Air Flow on Break Arcs Occurring between Silver Electrical Contacts with Copper Runners

    Haruki MIYAGAWA  Junya SEKIKAWA  

     
    PAPER

      Vol:
    E100-C No:9
      Page(s):
    709-715

    Arc runners are fixed on silver electrical contacts. Break arcs are generated between the contacts in a 450VDC circuit. Break arcs are magnetically blown-out and air is blown to the break arcs. The air flow was not used to our previous reports with runners. Circuit current when contacts are closed is 10A. Flow rate of air Q is changed from 1 to 10L/min. Supply voltage E is changed from 200V to 450V. The following results are shown. Arc duration D tends to decrease with increasing flow rate Q. The number of reignitions N increases with increasing supply voltage E for each flow rate Q. The number of reignitions is the least when the flow rate Q is 2L/min.

  • Recent Technologies in Japan on Array Antennas for Wireless Systems Open Access

    Jiro HIROKAWA  Qiang CHEN  Mitoshi FUJIMOTO  Ryo YAMAGUCHI  

     
    INVITED SURVEY PAPER-Antennas and Propagation

      Pubricized:
    2017/03/22
      Vol:
    E100-B No:9
      Page(s):
    1644-1652

    Array antenna technology for wireless systems is highly integrated for demands such as multi-functionality and high-performance. This paper details recent technologies in Japan in design techniques based on computational electromagnetics, antenna hardware techniques in the millimeter-wave band, array signal processing to add adaptive functions, and measurement methods to support design techniques, for array antennas for future wireless systems. Prospects of these four technologies are also described.

  • Energy-Efficient and Highly-Reliable Nonvolatile FPGA Using Self-Terminated Power-Gating Scheme

    Daisuke SUZUKI  Takahiro HANYU  

     
    PAPER-VLSI Architecture

      Pubricized:
    2017/05/19
      Vol:
    E100-D No:8
      Page(s):
    1618-1624

    An energy-efficient nonvolatile FPGA with assuring highly-reliable backup operation using a self-terminated power-gating scheme is proposed. Since the write current is automatically cut off just after the temporal data in the flip-flop is successfully backed up in the nonvolatile device, the amount of write energy can be minimized with no write failure. Moreover, when the backup operation in a particular cluster is completed, power supply of the cluster is immediately turned off, which minimizes standby energy due to leakage current. In fact, the total amount of energy consumption during the backup operation is reduced by 66% in comparison with that of a conventional worst-case-based approach where the long time write current pulse is used for the reliable write.

  • Calculation of Lightning-Induced Voltages on Overhead Lines from Oblique Return Stroke Channel above Stratified Lossy Ground in Time Domain

    Xiaojia WANG  Yazhou CHEN  Haojiang WAN  Qingxi YANG  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Pubricized:
    2017/02/17
      Vol:
    E100-B No:8
      Page(s):
    1454-1461

    In this paper, the effect of the tilt angle of return stroke channel and the stratified lossy ground on the lightning-induced voltages on the overhead lines are studied using the modified transmission-line model with linear current decay with height (MTLL). The results show that the lightning-induced voltages from oblique discharge channel are larger than those from the vertical discharge channel, and the peak values of the induced voltages will increase with increasing the tilt angle. When the ground is horizontally stratified, the peak of the induced voltages will increase with increasing the conductivity of the lower layer at different distances. When the upper ground conductivity increases, the voltage peak values will decrease if the overhead line is nearby the lightning strike point and increase if the overhead line is far from the lightning strike point. Moreover, the induced voltages are mainly affected by the conductivity of the lower layer soil when the conductivity of the upper layer ground is smaller than that of the lower layer ground at far distances. When the ground is vertically stratified, the induced voltages are mainly affected by the conductivity of the ground near the strike point when the overhead line and the strike point are located above the same medium; if the overhead line and the strike point are located above different mediums, both of the conductivities of the vertically stratified ground will influence the peak of the induced voltages and the conductivity of the ground which is far from the strike point has much more impact on induced voltages.

  • Demonstration of Three-Dimensional Near-Field Beamforming by Planar Loop Array for Magnetic Resonance Wireless Power Transfer

    Bo-Hee CHOI  Jeong-Hae LEE  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/01/24
      Vol:
    E100-B No:8
      Page(s):
    1449-1453

    This paper presents a capacitor-loaded 4x4 planar loop array for three-dimensional near-field beamforming of magnetic resonance wireless power transfer (WPT). This planar loop array provides three important functions: beamforming, selective power transfer, and the ability to work alignment free with the receiver. These functions are realized by adjusting the capacitance of each loop. The optimal capacitance of each loop that corresponds to the three functions can be found using a genetic algorithm (GA); the three functions were verified by comparing simulations and measurements at a frequency of 6.78MHz. Finally, the beamforming mechanism of a near-field loop array was investigated using the relationship between the current magnitude and the resonance frequency of each loop, resulting in the findings that the magnitude and the resonance frequency are correlated. This focused current of the specified loop creates a strong magnetic field in front of that loop, resulting in near-field beamforming.

61-80hit(669hit)