Takafumi FUJIMOTO Kazumasa TANAKA Mitsuo TAGUCHI
The wall admittance of an arbitrarily shaped microstrip antenna is generally formulated. As examples, elliptical microstrip antennas with and without a circular slot are calculated. The wall admittance is determined by the spectral domain analysis in order to consider the effect of the dielectric substrate. The electromagnetic fields within the cavity are expanded in terms of the eigenfunctions in the cylindrical coordinate system and their expansion coefficients are determined by applying the impedance boundary condition at the aperture in the sense of the least squares. The calculated input impedance and axial ratio agree fairly well with the experimental data. The proposed method is valid for the microstrip antennas with a patch whose geometry deviates from the particular coordinate system, such as single-feed circularly polarized microstrip antennas.
Zhen WANG Yoshinori UZAWA Akira KAWAKAMI
We report on progress in the development of high current density NbN/AlN/NbN tunnel junctions for application as submillimeter wave SIS mixers. A ultra-high current density up to 120 kA/cm2, roughly two orders of magnitude larger than any reported results for all-NbN tunnel junctions, was achieved in the junctions. The magnetic field dependence and temperature dependence of critical supercurrents were measured to investigate the Josephson tunneling behaviour of critical supercurrents in the high-Jc junctions. We have developed a low-noise quasi-optical SIS mixer with the high-current density NbN/AlN/NbN junctions and two-junction tuning circuits which employ Al/SiO/NbN microstriplines. The tuning characteristics of the mixer were investigated by measuring the response in the direct detection mode by using the Fourier Transform Spectrometer (FTS) and measuring the response in the heterodyne detection mode with the standard Y-factor method at frequencies from 670 to 1082 GHz. An uncorrected double sideband receiver noise temperature of 457 K (12hν/kB) was obtained at 783 GHz.
Kenshi SAITO Nobuyoshi SAKAKIBARA Yoshiki UENO Yoshio KOBAYASHI Daisuke YAMAGUCHI Kei SATO Tetsuya MIMURA
A 5-pole lumped element bandpass filter (BPF) of center frequency 264.05 MHz and fractional bandwidth (FBW) 0.76% is designed and fabricated using YBa2Cu3O7-d (YBCO) thin films deposited on both sides of a MgO substrate(40 mm 40 mm 0.5 mm). The return loss, minimum insertion loss and ripple were measured to be 20.0 dB, less than 0.1 dB and less than 0.1 dB at 70 K, respectively. These results verify both the compactness and low loss characteristics in the VHF band. The simulated frequency response, where the frequency dependences of inductance (L) and capacitance (C) elements and housing effect are taken into account, is in good agreement with the measured frequency response.
Manabu KITAMURA Jun-ichi TAKADA Kiyomichi ARAKI
The Matrix-Pencil (MP) method is applied to the estimation of the undesired radiation from the microstrip line discontinuities. The Q factors are obtained from the complex resonant frequencies estimated from FDTD transient field by using MP. The number of the damped oscillations is estimated by using MDL which is widely used as an information theoretic criterion for the model order estimation.
Microstrip leaky-wave antenna fed by an aperture-coupled microstrip operating at K-band is presented. Using the aperture-coupled microstrip as a feeding structure can fully exploit the wideband characteristic of the microstrip leaky-wave antenna. The dimensions of the antenna are obtained from the calculation of the propagation characteristics. Measurement shows a bandwidth of 22% for VSWR < 2:1 and a peak power gain of 12 dBi at 22 GHz for one element. Four-element array is developed with a gain of 18.7 dBi and the frequency-scanning feature is exhibited. The waveguide model is verified by measuring the 3-D radiation pattern of the microstrip leaky-wave array.
Yasushi MURAKAMI Hisao IWASAKI Tooru KIJIMA Akihito KATO Takeshi MANABE Toshio IHARA Masayuki FUJISE
This paper presents a novel four-sector shaped-beam antenna suitable for base station antennas in 60-GHz wireless local area networks (LANs). The antenna has a plateau configuration, whose four side walls have four linearly arranged microstrip antennas. Each trapezoidal facet excites a shaped beam in the elevation plane in order to meet link-budget requirement between base station and remote terminal, taking account of directional patters of remote terminal antennas. Low-loss curved microstrip-line is applied to connect the three-dimensional antennas with active circuits mounted on a flat carrier plate. This antenna has been adopted as the base station antenna in 60-GHz wireless LANs. The first-stage transmission experiment confirms the usefulness of shaped-beam antennas in the 60-GHz band.
Takashi AMANO Norimichi CHIBA Hisao IWASAKI
A novel dual-band internal antenna similar in size to the single-band internal antenna for cellular handsets is proposed. Our approach to realize a small and low-profile dual-band internal antenna is to use the dominant mode (TM10 mode) and the higher-order mode (TM30 mode). In order to use this approach for recent dual-band cellular systems it is necessary to lower the resonant frequency of the higher-order mode (TM30 mode). This motivated our development of a new antenna configuration with a slot on the radiation element of a quarter-wavelength shorted microstrip antenna to lower the resonant frequency of the TM30 mode. In this paper, the experimental and the analytical results for this antenna are presented. In the results, by adjusting the location and the length of the slot, the dual-frequency operation can be achieved with the frequency ratio (TM30 mode/TM10 mode) from 2 to 3. In addition, the enhancement of bandwidth is presented.
This paper presents a technique for miniaturization of microstrip line and coplanar waveguide for microwave integrated circuits by using airbridge technology. A theoretical analysis is given by a combination of the conformal mapping technique and the variational principle. Numerical results demonstrate significant effects on size reduction as well as wide range of the characteristic impedance variation due to the airbridge.
Takafumi FUJIMOTO Kazumasa TANAKA Mitsuo TAGUCHI
The formulation of the wall admittance of a circular microstrip antenna by the spectral domain method is presented. The circular microstrip antenna is calculated using the cavity model. The electromagnetic fields within the antenna cavity are determined from the impedance boundary condition at the side aperture. The contribution from the region outside the antenna is taken into account by the wall admittance. The wall admittance is defined by the magnetic field produced by the equivalent magnetic current at the aperture. The magnetic field is calculated by the spectral domain method. The wall admittances obtained by this method are compared with the results calculated by Shen. The calculated input impedances of the microstrip antenna agree fairly well with the experimental data for the substrate thickness of up to 0.048λg. The formulation of wall admittance presented here is easily applicable to arbitrarily shaped microstrip antennas.
Hiroyuki KIKUCHI Hideki TSUNETSUGU Makoto HIRANO Satoshi YAMAGUCHI Yuhki IMAI
This paper describes a distributed amplifier IC module and a distributed 1 : 2 signal distributor IC module for 40-Gbit/s optical transmission systems. These ICs were designed by the distributed circuit and inverted-microstrip-line design technique and fabricated using 0. 1-µm-gate-length GaAs MESFETs with a multilayer interconnection structure. These were mounted on a thin film multilayer substrate in a chip-size-cavity package by means of a flip-chip-bonding technique that uses transferred microsolder bumps. The amplifier module achieved a 3-dB bandwidth of more than 50 GHz and a gain of 8 dB. The 3-dB bandwidth of a 1 : 2 signal distributor module was 40 GHz and the loss was 2 dB. These modules were demonstrated at 40 Gbit/s and clear eye openings were confirmed.
Takaharu OHYAMA Yuji AKAHORI Masahiro YANAGISAWA Hideki TSUNETSUGU Shinji MINO
Optoelectronic hybrid integration is a promising technology for realizing the optical components needed in optical transmission, switching, and interconnection systems that use wavelength division multiplexing (WDM) and time division multiplexing (TDM). We have already developed versatile optical hybrid integrated modules using a silica-based planar lightwave circuit (PLC) platform. However, these modules consist solely of the optoelectronic semiconductor devices such as laser diodes (LDs) and photo diodes (PDs) and monolithic optoelectronic integrated circuits (OEICs). To carry out high-speed and versatile electric signal processing functions in future network systems, it is necessary to install semiconductor electrical integrated circuits (ICs) on a PLC platform. In this paper, we describe novel technologies for high-speed PLC platforms which make it possible to assemble both ICs and optoelectronic devices. Using these technologies, we fabricated a two-channel hybrid integrated optical transmitter module which is hybrid integrated with an LD array chip and an LD driver IC. On this PLC platform, we use microstrip lines (MSLs) to drive the LD driver IC. We also considered the effect of heat interference on the LD array chip caused by the LD driver IC when designing the layout of the chip assembly region. The LD array chip and the LD driver IC were flip-chip bonded with solder bumps of a different material to avoid any deterioration in the coupling efficiency of the LD array chip. The optical transmitter module we fabricated operated successfully at 9 Gbit/s non-return-zero (NRZ) signal. This approach using a PLC platform for the hybrid integration of an LD array chip and an LD driver IC will carry forward the development of high-speed optoelectronic modules with both optical and electrical signal processing functions.
Takaharu OHYAMA Yuji AKAHORI Masahiro YANAGISAWA Hideki TSUNETSUGU Shinji MINO
Optoelectronic hybrid integration is a promising technology for realizing the optical components needed in optical transmission, switching, and interconnection systems that use wavelength division multiplexing (WDM) and time division multiplexing (TDM). We have already developed versatile optical hybrid integrated modules using a silica-based planar lightwave circuit (PLC) platform. However, these modules consist solely of the optoelectronic semiconductor devices such as laser diodes (LDs) and photo diodes (PDs) and monolithic optoelectronic integrated circuits (OEICs). To carry out high-speed and versatile electric signal processing functions in future network systems, it is necessary to install semiconductor electrical integrated circuits (ICs) on a PLC platform. In this paper, we describe novel technologies for high-speed PLC platforms which make it possible to assemble both ICs and optoelectronic devices. Using these technologies, we fabricated a two-channel hybrid integrated optical transmitter module which is hybrid integrated with an LD array chip and an LD driver IC. On this PLC platform, we use microstrip lines (MSLs) to drive the LD driver IC. We also considered the effect of heat interference on the LD array chip caused by the LD driver IC when designing the layout of the chip assembly region. The LD array chip and the LD driver IC were flip-chip bonded with solder bumps of a different material to avoid any deterioration in the coupling efficiency of the LD array chip. The optical transmitter module we fabricated operated successfully at 9 Gbit/s non-return-zero (NRZ) signal. This approach using a PLC platform for the hybrid integration of an LD array chip and an LD driver IC will carry forward the development of high-speed optoelectronic modules with both optical and electrical signal processing functions.
Masashi HOTTA Yongxi QIAN Tatsuo ITOH
Resonant coupling type microstrip line interconnects using a bonding ribbon and dielectric pad have been designed and fabricated. The basic concept of this interconnect is the LC serial resonance of the pad capacitor and ribbon inductor. Both numerical simulation and experiment reveal low return loss and high efficiency connection at the predicted resonant frequency region, which can be readily shifted to higher frequencies by tuning the structural parameters. Improvement in bandwidth of the interconnect is demonstrated by using a pad with higher dielectric constant. Furthermore, it is also shown that a slight modification allows DC connection in addition to efficient coupling at the resonant frequency.
In this paper, we present an analysis of the microstrip lines whose strip conductors are of various cross-sections, such as rectangular cross-section, triangle cross-section, and half-cycle cross-section. The method employed is the boundary integral equation method (BIEM). Numerical results for these microstrip lines demonstrate various shape effects of the strip conductor on the characteristics of lines. The processing technique on the convergence of the Green's function is also described.
Resonant properties of resistively shunted tunnel junctions dominate the high-frequency performance of Josephson array oscillators. To improve the operating frequency, we have developed resistively shunted Nb/AlOx/Nb tunnel junctions with a small parasitic inductance. The inductance was minimized by reducing the inductive length between the tunnel junction and the contact hole to be about 1µm. By fitting the measured I-V characteristics of the shunted tunnel junction to the simulated characteristics, we estimated the inductance to be about 105 fH. The analysis of resonant properties showed that the shunted tunnel junctions with the small parasitic inductance have a high-frequency performance up to the Nb gap frequency. Josephson array oscillators using 11 such junctions were designed and fabricated to operate at 650 GHz and 1 THz. Shapiro steps induced by Josephson oscillation were clearly observed up to 1 THz. By fitting the step heights to the simulated results, we estimated the output power of the Josephson oscillator delivered to the load resistor to be about 10 µW at 625 GHz and 50 nW at 1 THz.
The results of experiments on the effect of the height and diameter of the cup on cup microstrip antennas are presented. The results show that the optimum height of the cup for the narrowest beamwidth and the highest gain is about 1/3 λ, and that the beamwidth decreases and the gain increases as the diameter of the cup increases.
Jean-Fu KIANG Chung-I G. HSU Ching-Her LEE
A combined mode-matching and moment method is proposed to calculate the capacitance matrix of wedge-supported cylindrical microstrip lines with an indented ground. Each indent is modeled as a multilayered medium in which the potential distribution is systematically derived by defining reflection matrices. An integral equation is derived in terms of the charge distribution on the strip surfaces. Galerkin's method is then applied to solve the integral equation for the charge distribution. The effects of strip width, strip separation, indent depth, and indent shape are analyzed.
Chi H.CHAN Chien Min LIN Leung TSANG Yiu Fung LEUNG
In this paper, we illustrate the analysis of microstrip structures with a large number of unknowns using the sparse-matrix/canonical grid method. This fast Fourier thansform (FFT) based iterative method reduces both CPU time and computer storage memory requirements. We employ the Mixed-Potential Integral Equation (MPIE) formulation in conjunction with the RWG triangular discretization. The required spatial-domain Green's functions are obtained efficiently and accurately using the Complex Image Method (CIM). The impedance matrix is decomposed into a sparse matrix which corresponds to near interactions and its complementary matrix which corresponds to far interactions among the subsectional current elements on the microstrip structures. During the iterative process, the near-interaction portion of the matrix -vector multiplication is computed directly as the conventional MPIE formulation. The far-interaction portion of the matrix-vector multiplication is computed indirectly using fast Fourier transforms (FFTs). This is achieved by a Taylor series expansion of the Green's function about the grid points of a uniformly-spaced canonical grid overlaying the triangular discretization.
Hiroyuki OHMINE Hitoshi MIZUTAMARI Yonehiko SUNAHARA
A new configuration of high gain circularly polarized microstrip antenna with a diagonal short and its analysis using boundary element method with a radiation load are presented. The center of a radiating patch is shorted with a 45-degree diagonal offset for not only obtaining a high gain but exciting a circular polarization. This configuration leads to achieving high gain with keeping a very low profile configuration. Boundary element method with radiation load which takes into account the effect of radiation loss is employed to analyze this complicated configuration. The radiation load, which is very important when boundary element method is applied to antenna analyses, can be obtained from radiation admittance using recurring technique, so that the accuracy of the antenna characteristic calculations can be improved. This antenna was designed and tested in the L-band and good characteristics, axial ratios and radiation patterns, have been verified.
Kiyotoshi YASUMOTO Mayumi MATSUNAGA
The dispersion characteristics of two nonidentical coupled microstrip lines and N identical coupled microstrip lines are analyzed using the coupled-mode theory combined with Galerkin's moment method in spectral domain. In this approach, the solutions to the original coupled microstrips are approximated by a linear combination of eigenmode solutions associated with the isolated single microstrip, and the reciprocity relation is used to derive the coupled-mode equations. The coupling coefficients are given by the simple overlap integrals in spectral domain between the eigenmode fields and currents of the individual microstrips. It is shown that the numerical results are in very good agreement with those obtained by the direct Galerkin's moment method over a broad range of weak to moderately strong coupling.