The search functionality is under construction.

Keyword Search Result

[Keyword] multimode(41hit)

1-20hit(41hit)

  • Mach-Zehnder Optical Modulator Integrated with Tunable Multimode Interference Coupler of Ti:LiNbO3 Waveguides for Controlling Modulation Extinction Ratio

    Anna HIRAI  Yuichi MATSUMOTO  Takanori SATO  Tadashi KAWAI  Akira ENOKIHARA  Shinya NAKAJIMA  Atsushi KANNO  Naokatsu YAMAMOTO  

     
    BRIEF PAPER-Lasers, Quantum Electronics

      Pubricized:
    2022/02/16
      Vol:
    E105-C No:8
      Page(s):
    385-388

    A Mach-Zehnder optical modulator with the tunable multimode interference coupler was fabricated using Ti-diffused LiNbO3. The modulation extinction ratio could be voltage controlled to maximize up to 50 dB by tuning the coupler. Optical single-sideband modulation was also achieved with a sideband suppression ratio of more than 30 dB.

  • InP-Based Photodetectors Monolithically Integrated with 90° Hybrid toward Over 400Gb/s Coherent Transmission Systems Open Access

    Hideki YAGI  Takuya OKIMOTO  Naoko INOUE  Koji EBIHARA  Kenji SAKURAI  Munetaka KUROKAWA  Satoru OKAMOTO  Kazuhiko HORINO  Tatsuya TAKEUCHI  Kouichiro YAMAZAKI  Yoshifumi NISHIMOTO  Yasuo YAMASAKI  Mitsuru EKAWA  Masaru TAKECHI  Yoshihiro YONEDA  

     
    INVITED PAPER

      Vol:
    E102-C No:4
      Page(s):
    347-356

    We present InP-based photodetectors monolithically integrated with a 90° hybrid toward over 400Gb/s coherent transmission systems. To attain a wide 3-dB bandwidth of more than 40GHz for 400Gb/s dual-polarization (DP)-16-ary quadrature amplitude modulation (16QAM) and 600Gb/s DP-64QAM through 64GBaud operation, A p-i-n photodiode structure consisting of a GaInAs thin absorption and low doping n-typed InP buffer layers was introduced to overcome the trade-off between short carrier transit time and low parasitic capacitance. Additionally, this InP buffer layer contributes to the reduction of propagation loss in the 90° hybrid waveguide, that is, this approach allows a high responsivity as well as wide 3-dB bandwidth operation. The coherent receiver module for the C-band (1530nm - 1570nm) operation indicated the wide 3-dB bandwidth of more than 40GHz and the high receiver responsivity of more than 0.070A/W (Chip responsivity within the C-band: 0.130A/W) thanks to photodetectors with this photodiode design. To expand the usable wavelengths in wavelength-division multiplexing toward large-capacity optical transmission, the photodetector integrated with the 90° hybrid optimized for the L-band (1565nm - 1612nm) operation was also fabricated, and exhibited the high responsivity of more than 0.120A/W over the L-band. Finally, the InP-based monolithically integrated photonic device consisting of eight-channel p-i-n photodiodes, two 90° hybrids and a beam splitter was realized for the miniaturization of modules and afforded the reduction of the total footprint by 70% in a module compared to photodetectors with the 90° hybrid and four-channel p-i-n photodiodes.

  • Near-Field Chipless RFID Tag System Using Inductive Coupling Between a Multimode Resonator and Detection Probes

    Fuminori SAKAI  Mitsuo MAKIMOTO  Koji WADA  

     
    PAPER

      Pubricized:
    2018/10/15
      Vol:
    E102-B No:4
      Page(s):
    722-731

    Chipless RFID tags that use the higher-mode resonances of a transmission line resonator are presented in this paper. We have proposed multimode stepped impedance resonators (SIRs) for this application and reported the fundamental characteristics of an experimental system composed of multimode SIRs with open-circuited ends and a near-field electromagnetic detector using capacitive coupling (electric field) probes for the detector. To improve the frequency response and widen the detection range, we introduced multimode SIRs with short-circuited ends and inductive coupling (magnetic field) probes and measured their properties. To reduce the size of the tag and reader, we examined the frequency responses and found that the optimal configuration consisted of C-shaped tags and detector probes with a spatially orthogonal arrangement. The experimental tag system showed good frequency responses, detection range, and frequency detection accuracy. In particular, the spacing between the tag resonator and the transmission line of the probe, which corresponds to the detection distance, was 5mm or more, and was at least 10 times greater than that of previously reported RFID tag systems using near-field electromagnetic coupling.

  • Low-Loss 3-Dimensional Shuffling Graded-Index Polymer Optical Waveguides for Optical Printed Circuit Boards Open Access

    Omar Faruk RASEL  Akira YAMAUCHI  Takaaki ISHIGURE  

     
    INVITED PAPER

      Vol:
    E101-C No:7
      Page(s):
    509-517

    This paper introduces a formation method for 3-dimensional 6 ch.×6 ch. shuffling structures with graded-index (GI) circular core in a multimode polymer optical waveguide for optical printed circuit boards (OPCBs) using a unique photomask-free fabrication technique named the Mosquito method. The interchannel pitch of the fabricated waveguides is 250µm, where all the channels consist of both horizontal and vertical bending structures and the last 6 channels in parallel cross over the first 6 channels. We also report 3-dimensional S-shaped polymer waveguides. In the S-shaped waveguides, the first and last 6 channels with both horizontal and vertical core bending composing the above 3-dimensional shuffling waveguide are separated, in order to evaluate the effect of over-crossing on the loss. It is experimentally confirmed that there is no excess insertion loss due to the shuffling structure in the 3-D shuffling waveguide. The evaluated crosstalk of the 3-D shuffling waveguide is lower than -30dB. The 3-D shuffling waveguide proposed in this paper will be a promising component to achieve high bandwidth density wiring for on-board optical interconnects.

  • Design and Analysis of Multi-Mode Stripline Resonator and Its Application to Bandpass Filter

    Masaya TAMURA  Shosei TOMIDA  Kento ICHINOSE  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E101-C No:3
      Page(s):
    151-160

    We present a design approach and analysis of a multimode stripline resonator (MSR). Furthermore, a bandpass filter (BPF) using a single MSR is presented. MSR has three fundamental modes, incorporating two transmission resonance modes and one quasi-lumped component (LC) resonance mode. The resonant frequencies and unloaded Q factors of those modes are theoretically derived by transmission modes and LC modes. By our equations, it is also explained that the resonant frequencies can be shown to be easily handled by an increase and decrease in the number of via holes. These frequencies calculated by our equations are in good agreement with those of 3-D simulations and measurements. Finally, design approach of a narrow bandpass filter using our resonator is introduced. Good agreement between measured and computed result is obtained.

  • Fast Mode-Switching (60ns) by Using A 2 × 2 Silicon Optical Mode Switch

    Haisong JIANG  Ryan IMANSYAH  Luke HIMBELE  Shota OE  Kiichi HAMAMOTO  

     
    PAPER

      Vol:
    E100-C No:10
      Page(s):
    782-788

    We present dynamic mode switching characteristic by using a 2 × 2 optical mode switch based on silicon waveguide. The configuration of optical mode switch is similar to MZI where the width of input and output ports are designed to permit the combining of the fundamental mode and the first order mode. We designed the symmetrical arms with phase shifter based on p-i-n structure in one arm to generate a π-phase difference between each arm. As a result, mode switching with the injection current of 60mA (5.7V) was successfully achieved with the mode crosstalk of -10dB at λ=1550nm. A minimum of less than 60ns and 40ns mode switching time for the fundamental mode to first order mode and first order mode to fundamental mode, was achieved respectively in this time.

  • First Demonstration of Mode Selective Active Multimode Interferometer Laser Diode

    Bingzhou HONG  Takuya KITANO  Haisong JIANG  Akio TAJIMA  Kiichi HAMAMOTO  

     
    PAPER

      Vol:
    E100-C No:10
      Page(s):
    775-781

    We newly propose the first lateral mode selective active multimode interferometer laser diode. The design principle is to arrange identical propagation path of different lateral mode. Thanks to multimode waveguide structure, 0th mode and 1st order mode has individual propagation path within one device. Individual lasing of fundamental mode as well as first mode was confirmed successfully.

  • Simultaneous Optimal Design Method of Primary Radiator and Main Reflector for Shaped Beam Antennas

    Takashi TOMURA  Michio TAKIKAWA  Yoshio INASAWA  Hiroaki MIYASHITA  

     
    PAPER

      Vol:
    E100-B No:2
      Page(s):
    211-218

    Shaped beam reflector antennas are widely used because they can achieve a shaped beam even with a single primary feed. Because coverage shapes depend on service areas, optimum primary radiators and reflector shapes are determined by the service areas. In this paper, we propose a simultaneous optimal design method of the primary radiator and reflector for the shaped beam antenna. Particle swarm optimization and the conjugate gradient method are adopted to optimize the primary radiator and reflector. The design method is applied to Japan coverage to verify its effectiveness.

  • Mode Crosstalk Evaluation Method by Using MMI Mode Filter for Optical Mode Switch

    Ryan IMANSYAH  Tatsushi TANAKA  Luke HIMBELE  Haisong JIANG  Kiichi HAMAMOTO  

     
    PAPER-Optoelectronics

      Vol:
    E99-C No:7
      Page(s):
    825-829

    We have proposed and demonstrated the principle of optical mode switch. However, the crosstalk between modes has not yet reported due to the difficulty of mode recognition and distinction. To accomplish this mode crosstalk evaluation, we integrated multimode interference (MMI) mode filter with the optical mode switch in this work. As a result, for the both TE and TM modes, the crosstalk of approximately -10 dB has been evaluated experimentally.

  • Split pump region in 1.55 μm InGaAsP/InGaAsP asymmetric active multi-mode interferometer laser diode for improved modulation bandwidth

    Mohammad NASIR UDDIN  Takaaki KIZU  Yasuhiro HINOKUMA  Kazuhiro TANABE  Akio TAJIMA  Kazutoshi KATO  Kiichi HAMAMOTO  

     
    PAPER

      Vol:
    E97-C No:7
      Page(s):
    781-786

    Laser diode capable of high speed direct modulation is one of the key solution for short distance applications due to their low power consumption, low cost and small size features. Realization of high modulation bandwidth for direct modulated laser maintaining the above mentioned feature is needed to enhance the short distance, low cost data transmission. One promising approach to enhance the modulation speed is to increase the photon density to achieve high modulation bandwidth. So to achieve this target, 1.55 $mu$m InGaAsP/InGaAsP multiple quantum well (MQW) asymmetric active multimode interferometer laser diode (active MMI-LD) has been demonstrated [1]. The split pumping concept has been applied for the active MMI-LD and significant enhancement of electrical to optical 3 dB down frequency bandwidth (f$_{mathrm{3dB}})$ up to 8 GHz has been successfully confirmed. The reported high bandwidth for split pump active MMI-LD is around 3.5 times higher than the previously reported maximum 3 dB bandwidth (2.3 GHz) of active MMI-LD without split pumping section. That shows, the splitted multimode pumping section behind the electrically isolated modulation section can potentially improve the modulation bandwidth of active MMI-LD. Clear and open eye diagram had also been confirmed for 2.5 Gbps, (2$^{mathrm{7}}$-1) pseudo random bit sequence (PRBS) modulation.

  • Multimode Image Clustering Using Optimal Image Descriptor Open Access

    Nasir AHMED  Abdul JALIL  

     
    PAPER

      Vol:
    E97-D No:4
      Page(s):
    743-751

    Manifold learning based image clustering models are usually employed at local level to deal with images sampled from nonlinear manifold. Multimode patterns in image data matrices can vary from nominal to significant due to images with different expressions, pose, illumination, or occlusion variations. We show that manifold learning based image clustering models are unable to achieve well separated images at local level for image datasets with significant multimode data patterns. Because gray level image features used in these clustering models are not able to capture the local neighborhood structure effectively for multimode image datasets. In this study, we use nearest neighborhood quality (NNQ) measure based criterion to improve local neighborhood structure in terms of correct nearest neighbors of images locally. We found Gist as the optimal image descriptor among HOG, Gist, SUN, SURF, and TED image descriptors based on an overall maximum NNQ measure on 10 benchmark image datasets. We observed significant performance improvement for recently reported clustering models such as Spectral Embedded Clustering (SEC) and Nonnegative Spectral Clustering with Discriminative Regularization (NSDR) using proposed approach. Experimentally, significant overall performance improvement of 10.5% (clustering accuracy) and 9.2% (normalized mutual information) on 13 benchmark image datasets is observed for SEC and NSDR clustering models. Further, overall computational cost of SEC model is reduced to 19% and clustering performance for challenging outdoor natural image databases is significantly improved by using proposed NNQ measure based optimal image representations.

  • A Robust Multimode Transmission Strategy for PU2RC with Quantized CQI Using Hierarchical Codebook

    Lei LV  Zhongpei ZHANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:3
      Page(s):
    638-646

    Per-User Unitary Rate Control (PU2RC) performs poorly when the number of users is small and suffers from the sum-rate ceiling effect in the high signal-to-noise ratio (SNR) regime. In this paper, we propose a multimode transmission (MMT) strategy to overcome these inherent shortcomings of PU2RC. In the proposed MMT strategy, the transmitter finds out the optimal transmission mode and schedules users using each user's instantaneous channel quality information (CQI) parameters. First we assume that each user's CQI parameters are perfectly reported in order to introduce the proposed MMT strategy. Then we consider the quantization of CQI parameters using codebooks designed by the Lloyd algorithm. Moreover, we modify the CQI parameters to improve the system's robustness against quantization error. Finally, in order to reduce the quantization error, we design a hierarchical codebook to jointly quantize the modified CQI parameters by considering the correlation between them. Simulation results show that the proposed MMT strategy effectively overcomes the shortcomings of PU2RC and is robust against low quantization level of CQI parameters.

  • Fourier-Domain Modal Delay Measurements for Multimode Fibers Optimized for the 850-nm Band in a Local Area Network

    Chan-Young KIM  Tae-Jung AHN  

     
    PAPER-Optical Fiber for Communications

      Vol:
    E96-B No:11
      Page(s):
    2840-2844

    We present transmission- and reflection-type measurement methods for the differential mode delay (DMD) of a multimode optical fiber (MMF) optimized for high-speed local area networks (LANs) for the 850-nm band. Compared with a previously reported transmission-type measurement method for the 1550-nm wavelength band, we demonstrate here high-resolution DMD measurement methods for MMFs in the 850-nm band. As the method is based on a Fourier-domain intermodal interference technique, the measurement sensitivity is ∼60-dB, and it requires a fiber only a few meters in length. The shorter wavelength also allows a threefold improvement in the measurement resolution. The reflection-type measurement technique is a more practical than the transmission-type measurement technique for the field testing of short MMFs already installed in networks. We believe that this method will be a practical tool not only for field testing of short-length MMFs already installed in networks but also for the development of new plastic optical fibers (POFs).

  • Frequency Domain Imbalance Estimation in Heterodyne Multimode/Band Receivers with Baseband Automatic Gain Control

    Satoshi DENNO  Ke LIU  Tatsuo FURUNO  Masahiro MORIKURA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E96-B No:1
      Page(s):
    271-280

    This paper proposes a novel scheme called as“frequency domain imbalance estimation” that estimates the imbalance of the Hilbert transformer in heterodyne multimode/band receivers with baseband automatic gain control (AGC). The proposed scheme uses correlation matrices in the frequency domain. This enables the receivers to keep high transmission performance in spite of the imbalance of the analog Hilbert transformer, by offsetting the imbalance. Moreover, the baseband AGC relaxes the requirement of the baseband A/D converter. The performance of imbalance estimation and imbalance cancellation is verified by computer simulation. As a result, it is shown that the proposed scheme not only estimates the imbalance of Hilbert transformer with extremely high precision, but also cancels the image-band interference such that it achieves the theoretical performance.

  • Ultra Linear Modulator with High Output RF Gain Using a 12 MMI Coupler

    Peng YUE  Qian-nan LI  Xiang YI  Tuo WANG  Zeng-ji LIU  Geng CHEN  Hua-xi GU  

     
    BRIEF PAPER-Lasers, Quantum Electronics

      Vol:
    E95-C No:12
      Page(s):
    1883-1886

    A novel and compact electro-optic modulator implemented by a combination of a 12 multimode interference (MMI) coupler and an integrated Mach-Zehnder interferometer (MZI) modulator consisting of a microring and a phase modulator (PM) is presented and analyzed theoretically. It is shown that the proposed modulator offers both ultra-linearity and high output RF gain simultaneously, with no requirements for complicated and precise direct current (DC) control.

  • Theoretical Performance Analysis of an Image-Band Interference Canceller with Deterministic Imbalance Estimation

    Satoshi DENNO  Ke LIU  Tatsuo FURUNO  Masahiro MORIKURA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:4
      Page(s):
    968-977

    It is known that a heterodyne multimode receiver implemented with a single RF (Radio Frequency) receiver suffers from image-band interference due to imbalance, i.e. the phase error and the gain imbalance of the RF Hilbert transformer. The blind image band interference canceler with deterministic imbalance estimation that has been proposed mitigates the image-band interference. This performance of the image-band interference canceler is analyzed theoretically in this paper. As a result, it is revealed that estimation accuracy of the deterministic imbalance estimation is improved slightly as the imbalance becomes greater. In addition, it is also shown that the deterministic estimation achieves better performance as the power of image-band interference increases. The performance is confirmed by computer simulation.

  • Blind Image-Band Interference Canceller Based on CM (Constant Modulus) Criteria for Multimode Receivers

    Satoshi DENNO  Tatsuo FURUNO  Masahiro MORIKURA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:9
      Page(s):
    2903-2914

    This paper proposes a blind image-band interference canceller that enables heterodyne receivers with only a single receiver chain to demodulate signals in any frequency band. In this paper, such a receiver is called "multimode/multiband heterodyne receiver." If multimode/multiband receivers are desired to receive signals with carrier frequency ranging from several MHz to GHz, then, such receivers are not allowed to have a narrow band RF-BPF (Radio Frequency Band Pass Filter) at the RF front end. However, although heterodyne receivers have been applied to wireless systems due to their high performance, it is known that without an RF-BPF heterodyne receivers suffer from severe image-band interference. Therefore, a blind image-band interference canceller is proposed in this paper to mitigate the image-band interference. Moreover, a novel algorithm based on the CM (Constant Modulus) criterion is proposed to carry out the cancellation. Performance of the blind image-band interference canceller is theoretically analyzed and the performance of the proposed canceller is verified by computer simulation. As a result, it is shown that the blind image-band interference canceller achieves superior performance even in the presence of strong image-band interference, for example, CIR=-40 dB. In summary, the proposed canceller makes it possible for the receiver with the single receiver chain to achieve multimode/multiband communications with high quality.

  • Efficient Heterodyne Digital Receiver with Direct RF-to-Digital Conversion for Software Defined Radio

    Minseok KIM  Takayuki MOTEKI  Koichi ICHIGE  Hiroyuki ARAI  

     
    PAPER

      Vol:
    E92-A No:4
      Page(s):
    1056-1062

    This paper presents a framework of multimode fully digital receiver implementation using direct RF-to-digital conversion. In this architecture the entire band including multiple RF systems is directly converted to digital by a wideband high speed ADC, and the RF systems can be easily switched by only digital signal processing with the minimum analog RF components. The digital RF front-end consists of parallel processing blocks for parallel data streams considering practical ADC's configuration. The RF signals are converted into baseband through digital IF stage and the data rates are made down by two steps of decimation. In this paper, a principle investigation into a dualmode system implementation is presented for simplicity. The circuit resource and the robustness to the spurs (spurious outputs) of an NCO (numerically controlled oscillator) in the proposed design will be presented. The proposed architecture was implemented with an FPGA on the developed prototype system and the operations were also verified.

  • A Near-Exact Sum Rate Approximation of Random Beamforming and Its Application to Mode Optimization

    YoHan KIM  HyukJin CHAE  JangHoon YANG  DongKu KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:3
      Page(s):
    1049-1052

    In this letter, a closed form approximation for the average sum rate of random beamforming is derived. It provides a near-exact approximation for arbitrary numbers of beams, users, and received SNR. The approximation is also applied to an average-sense multimode random beamforming scheme which optimizes the number of random beams without any type of instantaneous channel information. The proposed scheme shows better sum rate performance than random beamforming as well as an existing dual mode random beamforming scheme based on instantaneous channel information, while the number of feedback bits for beam index is reduced compared to random beamforming.

  • An Enhanced Distortion Measure Based VBR for Waveform Interpolative Speech Coders

    Heesik YANG  Sangbae JEONG  Minsoo HAHN  

     
    LETTER-Speech and Hearing

      Vol:
    E91-A No:4
      Page(s):
    1222-1225

    In our previous study, a distortion measure based variable bit rate (DM-VBR) scheme in waveform interpolation (WI) coders was proposed. In this paper, the repetition method is proposed to estimate non-transmitted parameters instead of the extrapolation method. For the further reduction of slowly evolving waveform (SEW) bit rates, the dimensions of the past parameters, which are different from those of the current parameters, are converted to match the dimension of the current ones. Distortions between interpolated sub-frames and original sub-frames are measured for the reduction of the SEW parameters. And the usefulness of several other distortion measures is also investigated instead of the simple log spectral distortion. Experimental results show that the coder adopting the new schemes offers above 41% bit rate reduction with almost unnoticeable output speech degradation.

1-20hit(41hit)