The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] noise(1036hit)

961-980hit(1036hit)

  • Millimeter-Wave Monolithic AlGaAs/InGaAs/GaAs Pseudomorphic HEMT Low Noise Amplifier Modules for Advanced Microwave Scanning Radiometer

    Kazuhiko NAKAHARA  Yasushi ITOH  Yoshie HORIIE  Takeshi SAKURA  Naohito YOSHIDA  Takayuki KATOH  Tadashi TAKAGI  Yasuo MITSUI  Yasuyuki ITO  

     
    PAPER

      Vol:
    E78-C No:9
      Page(s):
    1210-1215

    Millimeter-wave monolithic low noise amplifier modules using 0.15 µm AlGaAs/InGaAs/GaAs pseudomorphic HEMTs have been developed at V- and W-bands for the Advanced Microwave Scanning Radiometer. To achieve low noise and high gain of V-band single-stage and W-band two-stage monolithic amplifiers, a reactive matching method is employed in the design of input noise matching and output gain matching circuits based on the results of on-carrier S-parameter measurements up to 50 GHz and noise parameter measurements at 60 and 90 GHz. A V-band four-stage monolithic amplifier module has been mounted on a hermetically-sealed package with microstrip interface and has achieved a noise figure of 3 dB with a gain of 42.2 dB at 51 GHz. A W-band six-stage amplifier module has been mounted on a hermetically-sealed package with waveguide interface and has achieved a noise figure of 4.3 dB with a gain of 28.1 dB at 91 GHz. These results represent the best noise figure performance ever achieved by multi-stage monolithic low-noise amplifier modules.

  • A Novel Noise Parameters Extraction Technique for Microwave Packaged BJT and FET

    Kaijun GU  Son LE-NGOC  

     
    PAPER

      Vol:
    E78-C No:8
      Page(s):
    965-970

    In this paper, a novel noise parameters extraction technique for microwave packaged BJT and FET is proposed. The noise parameters of packaged BJT and FET for the entire operating frequency band can be obtained from the four noise parameters measured at a single frequency or a few frequencies. The predicated results obtained with this method agree well with the measured data. As a result, the novel noise parameters extraction technique can be used to predict the noise with a minimum effort.

  • Performance Improvement of Variable Stepsize NLMS

    Jirasak TANPREEYACHAYA  Ichi TAKUMI  Masayasu HATA  

     
    PAPER

      Vol:
    E78-A No:8
      Page(s):
    905-914

    Improvement of the convergence characteristics of the NLMS algorithm has received attention in the area of adaptive filtering. A new variable stepsize NLMS method, in which the stepsize is updated optimally by using variances of the measured error signal and the estimated noise, is proposed. The optimal control equation of the stepsize has been derived from a convergence characteristic approximation. A new condition to judge convergence is introduced in this paper to ensure the fastest initial convergence speed by providing precise timing to start estimating noise level. And further, some adaptive smoothing devices have been added into the ADF to overcome the saturation problem of the identification error caused by some random deviations. By the simulation, The initial convergence speed and the identification error in precise identification mode is improved significantly by more precise adjustment of stepsize without increasing in computational cost. The results are the best ever reported performanced. This variable stepsize NLMS-ADF also shows good effectiveness even in severe conditions, such as noisy or fast changing circumstances.

  • A Signal-to-Noise Enhancer with Extended Bandwidth Using Two MSSW Filters and Two 90Hybrids

    Youhei ISHIKAWA  Toshihiro NOMOTO  Takekazu OKADA  Satoru SHINMURA  Fumio KANAYA  Shinichiro ICHIGUCHI  Toshihito UMEGAKI  

     
    PAPER

      Vol:
    E78-C No:8
      Page(s):
    1026-1032

    A signal-to-noise enhancer with a bandwidth that is six times as wide as that of the conventional type is presented. A new circuit construction, the combination of two MSSW filters which have the same insertion loss in the broadband and two 90 hybrids, is effective to remarkably extend the bandwidth. The enhancement of the enhancer amounts to 20 dB in the operating frequency range of 1.9 GHz150 MHz in 0 to 60 degrees centigrade. This enhancer has accomplished FM threshold extension because the S/N is improved by 1 to 7 dB below the C/N of 9 dB. It was demonstrated that this new enhancer is effective for noise reduction in practical DBS reception.

  • A New Structure for Noise and Echo Cancelers Based on A Combined Fast Adaptive Filter Algorithm

    Youhua WANG  Kenji NAKAYAMA  Zhiqiang MA  

     
    PAPER-Digital Signal Processing

      Vol:
    E78-A No:7
      Page(s):
    845-853

    This paper presents a new structure for noise and echo cancelers based on a combined fast abaptive algorithm. The main purpose of the new structure is to detect both the double-talk and the unknown path change. This goal is accomplished by using two adaptive filters. A main adaptive filter Fn, adjusted only in the non-double-talk period by the normalized LMS algorithm, is used for providing the canceler output. An auxiliary adaptive filter Ff, adjusted by the fast RLS algorithm, is used for detecting the double-talk and obtaining a near optimum tap-weight vector for Fn in the initialization period and whenever the unknown path has a sudden or fast change. The proposed structure is examined through computer simulation on a noise cancellation problem. Good cancellation performance and stable operation are obtained when signal is a speech corrupted by a white noise, a colored noise and another speech signal. Simulation results also show that the proposed structure is capable of distinguishing the near-end signal from the noise path change and quickly tracking this change.

  • Direct Reconstruction of Planar Surfaces by Stereo Vision

    Yasushi KANAZAWA  Kenichi KANATANI  

     
    PAPER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E78-D No:7
      Page(s):
    917-922

    This paper studies the problem of reconstructing a planar surface from stereo images of multiple feature points that are known to be coplanar in the scene. We present a direct method by applying maximum likelihood estimation based on a statistical model of image noise. The significant fact about our method is that not only the 3-D position of the surface is reconstructed accurately but its reliability is also computed quantitatively. The effectiveness of our method is demonstrated by doing numerical simulation.

  • Optical Polarization Azimuth Modulation (POLAM)/ Heterodyne Detection System

    Toshiaki KURI  Katsutoshi TSUKAMOTO  Norihiko MORINAGA  

     
    PAPER-Optical Communication

      Vol:
    E78-B No:5
      Page(s):
    746-751

    In coherent optical space communication systems, the phase noise generated from high power laser diodes and the polarization axis mismatch between transmitter and receiver are the serious problem. In this paper, a novel coherent optical space communication system, called optical polarization azimuth modulation (POLAM)/heterodyne detection system is newly proposed, and its system performance is theoretically investigated. It is clarified that the POLAM system can perfectly remove the laser phase noise, is actually insensitive to the polarization axis mismatch, and can provide the remarkable performance improvement compared to a conventional optical frequency modulation system.

  • Effect of Power and Ground Pin Assignment and Inner Layer Structure on Switching Noise

    Nobuaki SUGIURA  

     
    PAPER-Components

      Vol:
    E78-C No:5
      Page(s):
    574-579

    Reducing switching noise is a key point in increasing signal transmission capability. This noise is related to the pin assignment of connectors and the inner layer structure of the printed circuit board (PCB). This paper presents and evaluates experimental results on the relationships between pin assignment, the number of the signal outputs, and switching noise. It shows that calculated and experimental results agree well if we assume that the distribution of return current, causing switching noise in a connector, does not uniformly decrease with increases in the number of ground pins. We also assume that the effective number of ground pins is related to the number of signal pins even if there are more ground pins than there are signal pins.

  • High-Tc Superconducting Quantum Interference Device with Additional Positive Feedback

    Akira ADACHI  Ken'ichi OKAJIMA  Youichi TAKADA  Saburo TANAKA  Hideo ITOZAKI  Haruhisa TOYODA  Hisashi KADO  

     
    PAPER-SQUID sensor and multi-channel SQUID system

      Vol:
    E78-C No:5
      Page(s):
    519-525

    This study shows that using the direct offset integration technique (DOIT) and additional positive feedback (APF) in a high-Tc dc superconducting quantum interference device (SQUID) improves the effective flux-to-voltage transfer function and reduces the flux noise of a magnetometer, thus improving the magnetic field noise. The effective flux-to-voltage transfer function and the flux noise with APF were measured at different values of the positive feedback parameter βa, which depends on the resistance of the APF circuit. These quantities were also compared between conditions with and without APF. This investigation showed that a βa condition the most suitable for minimizing the flux noise of a magnetometer with APF exists and that it is βa=0.77. The effective flux-to-voltage transfer function with APF is about three times what it is without APF (93 µV/Φ0 vs. 32 µV/Φ0). The magnetic field noise of a magnetometer with APF is improved by a factor of about 3 (242 fT/Hz vs. 738 fT/Hz).

  • A Mixed Photonic/Electronic Circuit Simulation Including Transient Noise Sources

    Eiichi SANO  Mikio YONEYAMA  

     
    PAPER-Opto-Electronics

      Vol:
    E78-C No:4
      Page(s):
    447-453

    Device models for a laser diode, photodetector, MESFET, HEMT, bipolar transistor, diode, and resistor are proposed and are implemented in a commercial mixed-signal simulator along with models for an optical fiber, an external optical modulator, and a pulse pattern generator. The validity of the models is confirmed by comparing simulated and experimental results. The performance of a mixed photonic/electronic circuit, which is determined by a large-signal waveform and the device noises, is estimated by the present analysis method.

  • Evaluation of Board-to-board High-speed Signal transmission Limit in a Rack System

    Nobuaki SUGIURA  Hiroki OKA  

     
    PAPER-Communication Systems and Transmission Equipment

      Vol:
    E78-B No:4
      Page(s):
    591-596

    Board-to-board signal transmission in a rack system is affected by various types of noise. Signal transmission capability is evaluated on the basis of physical construction parameters and signal conditions, such as rise time and amplitude. This paper examines noise in a rack system and shows that the maximum single-ended transmission capability is 100Mbps when pin-type connectors are used with a signal/ground pin assignment ratio of 1/1.

  • A New Robust Block Adaptive Filter for Colored Signal Input

    Shigenori KINJO  Hiroshi OCHI  

     
    LETTER-Digital Signal Processing

      Vol:
    E78-A No:3
      Page(s):
    437-439

    In this report, we propose a robust block adaptive digital filter (BADF) which can improve the accuracy of the estimated weights by averaging the adaptive weight vectors. We show that the improvement of the estimated weights is independent of the input signal correlation.

  • An Ultra Low Noise 50-GHz-Band Amplifier MMIC Using an AIGaAs/InGaAs Pseudomorphic HEMT

    Takuo KASHIWA  Takayuki KATOH  Naohito YOSHIDA  Hiroyuki MINAMI  Toshiaki KITANO  Makio KOMARU  Noriyuki TANINO  

     
    LETTER-Electromagnetic Theory

      Vol:
    E78-C No:3
      Page(s):
    318-321

    An ultra low noise 50-GHz-Band amplifier (LNA) MMIC has been developed using an AlGaAs/InGaAs pseudomorphic HEMT. A noise figure of 1.8 dB with an associated gain of 8.1 dB is achieved at 50 GHz. The noise figure is less than 2.0 dB from 50 GHz to 52.5 GHz. This is the state-of-the-art noise figure for low noise amplifiers around 50 GHz. The success of this LNA development came from the excellent HEMT and MMIC technologies and the accurate modeling of active and passive elements. Good agreement between measured and simulated data over the band from 40 GHz to 60 GHz is obtained.

  • An Effect on Chip Interleaving and Hard Limiter against Burst Noise in Direct Sequence Spread Spectrum Communication Systems

    Shin'ichi TACHIKAWA  

     
    LETTER-Spread Spectrum Technology

      Vol:
    E78-A No:2
      Page(s):
    272-276

    This paper presents improvement of data error rate against burst noise by using both chip interleaving and hard limiter in direct sequence spread spectrum (DS/SS) communication systems. Chip interleaving, which is a unique method of DS/SS systems, is effective when burst noise power is small. However, when the burst noise power is large, date error rate is degraded. While, though hard limiter suppresses burst noise power, it gives little effectiveness when the burst noise length is long. Using chip interleaving and hard limiter together, as they work complementary, stable and considerable improvement of data error rate is achieved.

  • Design of TCM Signals for Class-A Impulsive Noise Environment

    Shinichi MIYAMOTO  Masaaki KATAYAMA  Norihiko MORINAGA  

     
    PAPER

      Vol:
    E78-B No:2
      Page(s):
    253-259

    In this paper, a design of TCM signals for Middleton's class-A impulsive noise environment is investigated. The error event characteristics under the impulsive noise is investigated, and it is shown that the length of the signal sequence is more important than Euclidean distance between the signal sequences. Following this fact, we introduce the shortest error event path length as a measure of the signal design. In order to make this value large, increasing of states of convolutional codes is employed, and the performance improvement achieved by this method is evaluated. Numerical results show the great improvement of the error performance and conclude that the shortest error event path length is a good measure in the design of TCM signals under impulsive noise environment. Moreover, the capacity of class-A impulsive noise channel is evaluated, and the required signal sets expansion rates to obtain the achievable coding gain is discussed.

  • Roles and Problems of LISN in Noise Measurement

    Shuichi NITTA  

     
    INVITED PAPER

      Vol:
    E78-B No:2
      Page(s):
    109-119

    This paper describes, based on generation mechanism of conductive noise, that the real conductive noise on AC-mains can't be measured by LISN and 50 Ω-input impedance instrument specified by regulations such as CISPR. Second, it is pointed out that one of the causes of poor reproducibility in radiated emission measurement is the difference among line impedances of AC-mains. Finally, it is insisted that the apparatus such as LISN is necessary for stable measurement of radiated emission, and what improvement on LISN characteristics for higher frequency range should be done is introduced.

  • An Experimental Study on Subjective Evaluation of TV Picture Degradation by Electromagnetic Noise--Opinion Tests on Still and Motion Pictures--

    Motoshi TANAKA  Hiroshi INOUE  Tasuku TAKAGI  

     
    PAPER

      Vol:
    E78-B No:2
      Page(s):
    168-172

    The effects of Gaussian electromagnetic noise and non-Gaussian one on TV picture degradation are studied by using a composite noise generator which can control noise parameters. Three kinds of still pictures and four kinds of motion pictures are tested, and the picture degradation is subjectively evaluated with five-grade impairment scale. The tendency of the picture degradation against the every picture is almost the same. But MOS (Mean Opinion Score) between still picture and motion picture degradation is different in some measure when the power of burst noise is small.

  • Composite Noise Generator (CNG) as a Noise Simulator and Its Application to Noise Immunity Test of Digital Systems and TV Picture

    Tasuku TAKAGI  

     
    INVITED PAPER

      Vol:
    E78-B No:2
      Page(s):
    127-133

    A composite noise generator (CNG) is proposed for simulating the actual non-Gaussian noise and its applications are mentioned. Basing upon the actual measured result (APD) of induced noise from electric contact discharge arc, the APD is approximated by partial linearlization and shown that it can be simulated by a combination of plural Gaussian noise sources. Applying the CNG, quasi-peak (Q-P) detector is investigated and shown that the Q-P detector response is different for non-Gaussian noise when its time domain parameter is different even if its original APD is the same. For digital transmission error due to non-Gaussian noise, and for TV picture stained by the non-Gaussian noise, the CNG is applied to evaluate their performances and quality. The results obtained show that the CNG can be used as a standard non-Gaussian generator for several immunity tests for information equipments.

  • Some New Type Regression Analysis Methods for Acoustic Environmental System Based on the Introduction of Multiplicative Noise

    Mitsuo OHTA  Akira IKUTA  

     
    LETTER-Acoustics

      Vol:
    E78-A No:1
      Page(s):
    123-126

    In this study, after focussing on an energy (or intensity) scaled variable of acoustic systems, first, a new regression analysis method is theoretically proposed by introducing a multiplicative noise model suitable to the positively scaled stocastic system. Then, the effectiveness of the proposed method is confirmed experimentally by applying it to the actual acoustic data.

  • Highly Sensitive Real Time Electro-Optic Probing for Long Logic Pattern Analysis

    Hironori TAKAHASHI  Shin-ichiro AOSHIMA  Kazuhiko WAKAMORI  Isuke HIRANO  Yutaka TSUCHIYA  

     
    PAPER

      Vol:
    E78-C No:1
      Page(s):
    67-72

    While Electro-Optic (E-O) sampling has achived the electric signal measurement with advantages of noninvasive, noncontact and ultrafast time resolution, it is unsuitable for measuring long logic patterns in fast ICs under the functional test conditions. To overcome this problem, a real time E-O probing using a continuous wave (CW) diode laser and a fast photodetector has been developed. By adopting a ZnTe E-O probe having a half-wave voltage of 3.6 kV, shot noise limited measurement with a frequency bandwidth of 480 MHz has been achieved using a low noise diode laser (wavelength of 780 nm, output power of 30 mW), a pin photodiode, a wideband low noise amplifier, and a digital oscilloscope having 500 MHz bandwidth as a waveform analyzer. The minimum detectable voltage was 23 mV under 700 times integration. In this paper, discussion of the voltage sensitivity of real time E-O probing is included. Key parameters for attaining the highly sensitive real time E-O probing are the sensitivity of the E-O probe and noises of the probing light and detection system.

961-980hit(1036hit)