The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] sensor(809hit)

61-80hit(809hit)

  • RPL-Based Tree Construction Scheme for Target-Specific Code Dissemination in Wireless Sensors Networks

    Hiromu ASAHINA  Kentaroh TOYODA  P. Takis MATHIOPOULOS  Iwao SASASE  Hisao YAMAMOTO  

     
    PAPER-Network

      Pubricized:
    2019/09/11
      Vol:
    E103-B No:3
      Page(s):
    190-199

    Distributing codes to specific target sensors in order to fix bugs and/or install a new application is an important management task in WSNs (Wireless Sensor Networks). For the energy efficient dissemination of such codes to specific target sensors, it is required to select the minimum required number of forwarders with the fewest control messages. In this paper, we propose a novel RPL (Routing Protocol for Low-power and lossy networks)-based tree construction scheme for target-specific code dissemination, which is called R-TCS. The main idea of R-TCS is that by leveraging the data collection tree created by a standard routing protocol RPL, it is possible to construct the code dissemination tree with the minimum numbers of non-target sensors and control messages. Since by creating a data collection tree each sensor exchanges RPL messages with the root of the tree, every sensor knows which sensors compose its upwards route, i.e. the route towards the root, and downwards route, i.e. the route towards the leaves. Because of these properties, a target sensor can select the upward route that contains the minimum number of non-target sensors. In addition, a sensor whose downward routes do not contain a target sensor is not required to transmit redundant control messages which are related to the code dissemination operation. In this way, R-TCS can reduce the energy consumption which typically happens in other target-specific code dissemination schemes by the transmission of control messages. In fact, various performance evaluation results obtained by means of computer simulations show that R-TCS reduces by at least 50% energy consumption as compared to the other previous known target-specific code dissemination scheme under the condition where ratio of target sensors is 10% of all sensors.

  • Distributed Observer over Delayed Sensor Networks for Systems with Unknown Inputs

    Ryosuke ADACHI  Yuh YAMASHITA  Koichi KOBAYASHI  

     
    PAPER

      Vol:
    E103-A No:2
      Page(s):
    469-477

    In this paper, we consider the design problem of an unknown-input observer for distributed network systems under the existence of communication delays. In the proposed method, each node estimates all states and calculates inputs from its own estimate. It is assumed that the controller of each node is given by an observer-based controller. When calculating each node, the input values of the other nodes cannot be utilized. Therefore, each node calculates alternative inputs instead of the unknown inputs of the other nodes. The alternative inputs are generated by own estimate based on the feedback controller of the other nodes given by the assumption. Each node utilizes these values instead of the unknown inputs when calculating the estimation and delay compensation. The stability of the estimation error of the proposed observer is proven by a Lyapunov-Krasovskii functional. The stability condition is given by a linear matrix inequality (LMI). Finally, the result of a numerical simulation is shown to verify the effectiveness of the proposed method.

  • An Open Multi-Sensor Fusion Toolbox for Autonomous Vehicles

    Abraham MONRROY CANO  Eijiro TAKEUCHI  Shinpei KATO  Masato EDAHIRO  

     
    PAPER

      Vol:
    E103-A No:1
      Page(s):
    252-264

    We present an accurate and easy-to-use multi-sensor fusion toolbox for autonomous vehicles. It includes a ‘target-less’ multi-LiDAR (Light Detection and Ranging), and Camera-LiDAR calibration, sensor fusion, and a fast and accurate point cloud ground classifier. Our calibration methods do not require complex setup procedures, and once the sensors are calibrated, our framework eases the fusion of multiple point clouds, and cameras. In addition we present an original real-time ground-obstacle classifier, which runs on the CPU, and is designed to be used with any type and number of LiDARs. Evaluation results on the KITTI dataset confirm that our calibration method has comparable accuracy with other state-of-the-art contenders in the benchmark.

  • Decentralized Local Scaling Factor Control for Backoff-Based Opportunistic Routing Open Access

    Taku YAMAZAKI  Ryo YAMAMOTO  Genki HOSOKAWA  Tadahide KUNITACHI  Yoshiaki TANAKA  

     
    PAPER-Information Network

      Pubricized:
    2019/07/17
      Vol:
    E102-D No:12
      Page(s):
    2317-2328

    In wireless multi-hop networks such as ad hoc networks and sensor networks, backoff-based opportunistic routing protocols, which make a forwarding decision based on backoff time, have been proposed. In the protocols, each potential forwarder calculates the backoff time based on the product of a weight and global scaling factor. The weight prioritizes potential forwarders and is calculated based on hop counts to the destination of a sender and receiver. The global scaling factor is a predetermined value to map the weight to the actual backoff time. However, there are three common issues derived from the global scaling factor. First, it is necessary to share the predetermined global scaling factor with a centralized manner among all terminals properly for the backoff time calculation. Second, it is almost impossible to change the global scaling factor during the networks are being used. Third, it is difficult to set the global scaling factor to an appropriate value since the value differs among each local surrounding of forwarders. To address the aforementioned issues, this paper proposes a novel decentralized local scaling factor control without relying on a predetermined global scaling factor. The proposed method consists of the following three mechanisms: (1) sender-centric local scaling factor setting mechanism in a decentralized manner instead of the global scaling factor, (2) adaptive scaling factor control mechanism which adapts the local scaling factor to each local surrounding of forwarders, and (3) mitigation mechanism for excessive local scaling factor increases for the local scaling factor convergence. Finally, this paper evaluates the backoff-based opportunistic routing protocol with and without the proposed method using computer simulations.

  • Mathematical Analysis of Secrecy Amplification in Key Infection: The Whispering Mode

    Dae HYUN YUM  

     
    LETTER-Information Network

      Pubricized:
    2019/09/12
      Vol:
    E102-D No:12
      Page(s):
    2599-2602

    A wireless sensor network consists of spatially distributed devices using sensors to monitor physical and environmental conditions. Key infection is a key distribution protocol for wireless sensor networks with a partially present adversary; a sensor node wishing to communicate secretly with other nodes simply sends a symmetric encryption key in the clear. The partially present adversary can eavesdrop on only a small fraction of the keys. Secrecy amplification is a post-deployment strategy to improve the security of key infection by combining multiple keys propagated along different paths. The previous mathematical analysis of secrecy amplification assumes that sensor nodes always transmit packets at the maximum strength. We provide a mathematical analysis of secrecy amplification where nodes adjust their transmission power adaptively (a.k.a. whispering mode).

  • Maximizing Lifetime of Data-Gathering Sensor Trees in Wireless Sensor Networks

    Hiroshi MATSUURA  

     
    PAPER-Network

      Pubricized:
    2019/06/10
      Vol:
    E102-B No:12
      Page(s):
    2205-2217

    Sensor-data gathering using multi-hop connections in a wireless sensor network is being widely used, and a tree topology for data gathering is considered promising because it eases data aggregation. Therefore, many sensor-tree-creation algorithms have been proposed. The sensors in a tree, however, generally run on batteries, so long tree lifetime is one of the most important factors in collecting sensor data from a tree over a long period. It has been proven that creating the longest-lifetime tree is a non-deterministic-polynomial complete problem; thus, all previously proposed sensor-tree-creation algorithms are heuristic. To evaluate a heuristic algorithm, the time complexity of the algorithm is very important, as well as the quantitative evaluation of the lifetimes of the created trees and algorithm speed. This paper proposes an algorithm called assured switching with accurate graph optimization (ASAGAO) that can create a sensor tree with a much longer lifetime much faster than other sensor-tree-creation algorithms. In addition, it has much smaller time complexity.

  • Distributed Mutually Referenced Equalization

    Yoshiki SUGITANI  Wataru YAMAMOTO  Teruyuki MIYAJIMA  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:12
      Page(s):
    1997-2000

    We propose a distributed blind equalization method for wireless sensor networks, in which a source sends data and each node performs time-domain equalization to estimate the data from a received signal that is affected by inter-symbol interference. The equalization can be performed distributively based on the mutually referenced equalization principle. Even if the nodes in the network are not fully connected to each other, the average consensus technique enables us to perform the equalization of all channels.

  • Real-Time Scheduling of Data Flows with Deadlines for Industrial Wireless Sensor Networks

    Benhong ZHANG  Yiming WANG  Jianjun ZHANG  Juan XU  

     
    PAPER-Network

      Pubricized:
    2019/05/27
      Vol:
    E102-B No:12
      Page(s):
    2218-2225

    The flexibility of wireless communication makes it more and more widely used in industrial scenarios. To satisfy the strict real-time requirements of industry, various wireless methods especially based on the time division multiple access protocol have been introduced. In this work, we first conduct a mathematical analysis of the network model and the problem of minimum packet loss. Then, an optimal Real-time Scheduling algorithm based on Backtracking method (RSBT) for industrial wireless sensor networks is proposed; this yields a scheduling scheme that can achieve the lowest network packet loss rate. We also propose a suboptimal Real-time Scheduling algorithm based on Urgency and Concurrency (RSUC). Simulation results show that the proposed algorithms effectively reduce the rate of the network packet loss and the average response time of data flows. The real-time performance of the RSUC algorithm is close to optimal, which confirms the computation efficiency of the algorithm.

  • Structural Compressed Network Coding for Data Collection in Cluster-Based Wireless Sensor Networks

    Yimin ZHAO  Song XIAO  Hongping GAN  Lizhao LI  Lina XIAO  

     
    PAPER-Network

      Pubricized:
    2019/05/21
      Vol:
    E102-B No:11
      Page(s):
    2126-2138

    To efficiently collect sensor readings in cluster-based wireless sensor networks, we propose a structural compressed network coding (SCNC) scheme that jointly considers structural compressed sensing (SCS) and network coding (NC). The proposed scheme exploits the structural compressibility of sensor readings for data compression and reconstruction. Random linear network coding (RLNC) is used to re-project the measurements and thus enhance network reliability. Furthermore, we calculate the energy consumption of intra- and inter-cluster transmission and analyze the effect of the cluster size on the total transmission energy consumption. To that end, we introduce an iterative reweighed sparsity recovery algorithm to address the all-or-nothing effect of RLNC and decrease the recovery error. Experiments show that the SCNC scheme can decrease the number of measurements required for decoding and improve the network's robustness, particularly when the loss rate is high. Moreover, the proposed recovery algorithm has better reconstruction performance than several other state-of-the-art recovery algorithms.

  • Multi-Hypothesis Prediction Scheme Based on the Joint Sparsity Model Open Access

    Can CHEN  Chao ZHOU  Jian LIU  Dengyin ZHANG  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2019/08/05
      Vol:
    E102-D No:11
      Page(s):
    2214-2220

    Distributed compressive video sensing (DCVS) has received considerable attention due to its potential in source-limited communication, e.g., wireless video sensor networks (WVSNs). Multi-hypothesis (MH) prediction, which treats the target block as a linear combination of hypotheses, is a state-of-the-art technique in DCVS. The common approach is under the supposition that blocks that are dissimilar from the target block are given lower weights than blocks that are more similar. This assumption can yield acceptable reconstruction quality, but it is not suitable for scenarios with more details. In this paper, based on the joint sparsity model (JSM), the authors present a Tikhonov-regularized MH prediction scheme in which the most similar block provides the similar common portion and the others blocks provide respective unique portions, differing from the common supposition. Specifically, a new scheme for generating hypotheses and a Euclidean distance-based metric for the regularized term are proposed. Compared with several state-of-the-art algorithms, the authors show the effectiveness of the proposed scheme when there are a limited number of hypotheses.

  • Adaptive Channel Access Control Solving Compound Problem of Hidden Nodes and Continuous Collisions among Periodic Data Flows

    Anh-Huy NGUYEN  Yosuke TANIGAWA  Hideki TODE  

     
    PAPER-Network

      Pubricized:
    2019/05/21
      Vol:
    E102-B No:11
      Page(s):
    2113-2125

    With the rapid increase in IoT (Internet of Things) applications, more sensor devices, generating periodic data flows whose packets are transmitted at regular intervals, are being incorporated into WSNs (Wireless Sensor Networks). However, packet collision caused by the hidden node problem is becoming serious, particularly in large-scale multi-hop WSNs. Moreover, focusing on periodic data flows, continuous packet collisions among periodic data flows occur if the periodic packet transmission phases become synchronized. In this paper, we tackle the compounded negative effect of the hidden node problem and the continuous collision problem among periodic data flows. As this is a complex variant of the hidden node problem, there is no simple and well-studied solution. To solve this problem, we propose a new MAC layer mechanism. The proposed method predicts a future risky duration during which a collision can be caused by hidden nodes by taking into account the periodic characteristics of data packet generation. In the risky duration, each sensor node stops transmitting data packets in order to avoid collisions. To the best of our knowledge, this is the first paper that considers the compounded effect of hidden nodes and continuous collisions among periodic data flows. Other advantages of the proposed method include eliminating the need for any new control packets and it can be implemented in widely-diffused IEEE 802.11 and IEEE 802.15.4 devices.

  • A Highly Efficient Wideband Two-Dimensional Direction Estimation Method with L-Shaped Microphone Array

    Bandhit SUKSIRI  Masahiro FUKUMOTO  

     
    PAPER-Digital Signal Processing

      Vol:
    E102-A No:11
      Page(s):
    1457-1472

    This paper presents an efficient wideband two-dimensional direction-of-arrival (DOA) estimation for an L-shaped microphone array. We propose a way to construct a wideband sample cross-correlation matrix without any process of DOA preliminary estimation, such as beamforming technique, by exploiting sample cross-correlation matrices of two different frequencies for all frequency bins. Subsequently, wideband DOAs can be estimated by using this wideband matrix along with a scheme of estimating DOA in a narrowband subspace method. Therefore, a contribution of our study is providing an alternative framework for recent narrowband subspace methods to estimating the DOA of wideband sources directly. It means that this framework enables cutting-edge techniques in the existing narrowband subspace methods to implement the wideband direction estimation for reducing the computational complexity and facilitating the estimation algorithm. Theoretical analysis and effectiveness of the proposed method are substantiated through numerical simulations and experiments, which are performed in reverberating environments. The results show that performance of the proposed method performs better than others over a range of signal-to-noise ratio with just a few microphones. All these advantages make the proposed method a powerful tool for navigation systems based on acoustic signal processing.

  • WearAuth: Wristwear-Assisted User Authentication for Smartphones Using Wavelet-Based Multi-Resolution Analysis

    Taeho KANG  Sangwoo JI  Hayoung JEONG  Bin ZHU  Jong KIM  

     
    PAPER-Information Network

      Pubricized:
    2019/06/21
      Vol:
    E102-D No:10
      Page(s):
    1976-1992

    Zero-effort bilateral authentication was introduced recently to use a trusted wristwear to continuously authenticate a smartphone user. A user is allowed to use the smartphone if both wristwear and smartphone are determined to be held by the same person by comparing the wristwear's motion with the smartphone's input or motion, depending on the grip — which hand holds the smartphone and which hand provides the input. Unfortunately, the scheme has several shortcomings. First, it may work improperly when the user is walking since the gait can conceal the wrist's motions of making touches. Second, it continuously compares the motions of the two devices, which incurs a heavy communication burden. Third, the acceleration-based grip inference, which assumes that the smartphone is horizontal with the ground is inapplicable in practice. To address these shortcomings, we propose WearAuth, wristwear-assisted user authentication for smartphones in this paper. WearAuth applies wavelet-based multi-resolution analysis to extract the desired touch-specific movements regardless of whether the user is stationary or moving; uses discrete Fourier transform-based approximate correlation to reduce the communication overhead; and takes a new approach to directly compute the relative device orientation without using acceleration to infer the grip more precisely. In two experiments with 50 subjects, WearAuth produced false negative rates of 3.6% or less and false positive rates of 1.69% or less. We conclude that WearAuth operates properly under various usage cases and is robust to sophisticated attacks.

  • A Method for Smartphone Theft Prevention When the Owner Dozes Off Open Access

    Kouhei NAGATA  Yoshiaki SEKI  

     
    LETTER-Physical Security

      Pubricized:
    2019/06/04
      Vol:
    E102-D No:9
      Page(s):
    1686-1688

    We propose a method for preventing smartphone theft when the owner dozes off. The owner of the smartphone wears a wristwatch type device that has an acceleration sensor and a vibration mode. This device detects when the owner dozes off. When the acceleration sensor in the smartphone detects an accident while dozing, the device vibrates. We implemented this function and tested its usefulness.

  • Bicycle Behavior Recognition Using 3-Axis Acceleration Sensor and 3-Axis Gyro Sensor Equipped with Smartphone

    Yuri USAMI  Kazuaki ISHIKAWA  Toshinori TAKAYAMA  Masao YANAGISAWA  Nozomu TOGAWA  

     
    PAPER-Intelligent Transport System

      Vol:
    E102-A No:8
      Page(s):
    953-965

    It becomes possible to prevent accidents beforehand by predicting dangerous riding behavior based on recognition of bicycle behaviors. In this paper, we propose a bicycle behavior recognition method using a three-axis acceleration sensor and three-axis gyro sensor equipped with a smartphone when it is installed on a bicycle handlebar. We focus on the periodic handlebar motions for balancing while running a bicycle and reduce the sensor noises caused by them. After that, we use machine learning for recognizing the bicycle behaviors, effectively utilizing the motion features in bicycle behavior recognition. The experimental results demonstrate that the proposed method accurately recognizes the four bicycle behaviors of stop, run straight, turn right, and turn left and its F-measure becomes around 0.9. The results indicate that, even if the smartphone is installed on the noisy bicycle handlebar, our proposed method can recognize the bicycle behaviors with almost the same accuracy as the one when a smartphone is installed on a rear axle of a bicycle on which the handlebar motion noises can be much reduced.

  • Implementation of Smart Dressing Systems Based on Flexible pH Sensors Using PET Films

    Seok-Oh YUN  Jung Hoon LEE  Jin LEE  Choul-Young KIM  

     
    LETTER-Computer System

      Pubricized:
    2019/04/23
      Vol:
    E102-D No:8
      Page(s):
    1572-1575

    In this paper, a smart dressing system was implemented based on flexible pH sensors that can monitor the infection of a wounded area by tracking the pH value of the area. Motivated by the fabrication process widely used for semiconductors, the flexible pH sensor fabrication process was devised with a polyester (PET) film and a Si wafer, which deposits Au and Ag on a PET film. Because the electrodes are comprised of a working electrode and a reference electrode, the reference electrode was fabricated by synthesizing the Polyaniline (PANI) on Ag/AgCl, while the pH sensor has four channels to evenly measure the pH value in a wide area. The smart dressing system was constructed with four pH sensors, a single temperature sensor, a level shifter, a regulator, an analog-to-digital converter (ADC), and a monitoring PC. The measurement results show that our smart dressing system has a size of 5×5cm2 and can monitor the pH value range found in [3,9] with a sensitivity slope of 50mV/pH.

  • Several Bits Are Enough: Off-Grid Target Localization in WSNs Using Variational Bayesian EM Algorithm

    Yan GUO  Peng QIAN  Ning LI  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:7
      Page(s):
    926-929

    The compressive sensing has been applied to develop an effective framework for simultaneously localizing multiple targets in wireless sensor networks. Nevertheless, existing methods implicitly use analog measurements, which have infinite bit precision. In this letter, we focus on off-grid target localization using quantized measurements with only several bits. To address this, we propose a novel localization framework for jointly estimating target locations and dealing with quantization errors, based on the novel application of the variational Bayesian Expectation-Maximization methodology. Simulation results highlight its superior performance.

  • An LTPS Ambient Light Sensor System with Sensitivity Correction Methods in LCD

    Takashi NAKAMURA  Masahiro TADA  Hiroyuki KIMURA  

     
    PAPER

      Vol:
    E102-C No:7
      Page(s):
    558-564

    An integrated ambient light sensor (ALS) system in low-temperature polycrystalline silicon (LTPS) thin-film-transistor liquid-crystal-displays (TFT-LCDs) is proposed and prototyped in this study. It is designed as a 4-bit (16-step-grayscale) ALS and includes a noise subtraction circuit, a comparator as an analog-to-digital converter (ADC), 4-bit counters, and a parallel-to-serial converter. LTPS lateral p-i-n diodes with a long i-region are employed as photodetectors in the system. An LSI source driver is mounted on the LCD panel with a sensor control block which provides programmable clocks and reference voltages to the ALS circuit on the glass substrate for sensitivity tuning. The reliability tests were conducted for 300 hours with 30000 lux illumination at 70 °C and at -20 °C. The observed deviations of the ALS values for dark, 1000 lux, and 10000 lux were within ±1.

  • Human Activity Identification by Height and Doppler RCS Information Detected by MIMO Radar

    Dai SASAKAWA  Naoki HONMA  Takeshi NAKAYAMA  Shoichi IIZUKA  

     
    PAPER

      Pubricized:
    2019/01/22
      Vol:
    E102-B No:7
      Page(s):
    1270-1278

    This paper introduces a method that identifies human activity from the height and Doppler Radar Cross Section (RCS) information detected by Multiple-Input Multiple-Output (MIMO) radar. This method estimates the three-dimensional target location by applying the MUltiple SIgnal Classification (MUSIC) method to the observed MIMO channel; the Doppler RCS is calculated from the signal reflected from the target. A gesture recognition algorithm is applied to the trajectory of the temporal transition of the estimated human height and the Doppler RCS. In experiments, the proposed method achieves over 90% recognition rate (average).

  • A Simple Deterministic Measurement Matrix Based on GMW Pseudorandom Sequence

    Haiqiang LIU  Gang HUA  Hongsheng YIN  Aichun ZHU  Ran CUI  

     
    PAPER-Information Network

      Pubricized:
    2019/04/16
      Vol:
    E102-D No:7
      Page(s):
    1296-1301

    Compressed sensing is an effective compression algorithm. It is widely used to measure signals in distributed sensor networks (DSNs). Considering the limited resources of DSNs, the measurement matrices used in DSNs must be simple. In this paper, we construct a deterministic measurement matrix based on Gordon-Mills-Welch (GMW) sequence. The column vectors of the proposed measurement matrix are generated by cyclically shifting a GMW sequence. Compared with some state-of-the-art measurement matrices, the proposed measurement matrix has relative lower computational complexity and needs less storage space. It is suitable for resource-constrained DSNs. Moreover, because the proposed measurement matrix can be realized by using simple shift register, it is more practical. The simulation result shows that, in terms of recovery quality, the proposed measurement matrix performs better than some state-of-the-art measurement matrices.

61-80hit(809hit)