The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] shape(193hit)

1-20hit(193hit)

  • Segmentation of Optic Disc and Optic Cup Based on Two-Layer Level Set with Sparse Shape Prior Constraint in Fundus Images

    Siqi WANG  Ming XU  Xiaosheng YU  Chengdong WU  

     
    LETTER-Computer Graphics

      Pubricized:
    2023/01/16
      Vol:
    E106-A No:7
      Page(s):
    1020-1024

    Glaucoma is a common high-incidence eye disease. The detection of the optic cup and optic disc in fundus images is one of the important steps in the clinical diagnosis of glaucoma. However, the fundus images are generally intensity inhomogeneity, and complex organizational structure, and are disturbed by blood vessels and lesions. In order to extract the optic disc and optic cup regions more accurately, we propose a segmentation method of the optic disc and optic cup in fundus image based on distance regularized two-layer level with sparse shape prior constraint. The experimental results show that our method can segment the optic disc and optic cup region more accurately and obtain satisfactory results.

  • Crosstalk Analysis and Countermeasures of High-Bandwidth 3D-Stacked Memory Using Multi-Hop Inductive Coupling Interface Open Access

    Kota SHIBA  Atsutake KOSUGE  Mototsugu HAMADA  Tadahiro KURODA  

     
    BRIEF PAPER

      Pubricized:
    2022/09/30
      Vol:
    E106-C No:7
      Page(s):
    391-394

    This paper describes an in-depth analysis of crosstalk in a high-bandwidth 3D-stacked memory using a multi-hop inductive coupling interface and proposes two countermeasures. This work analyzes the crosstalk among seven stacked chips using a 3D electromagnetic (EM) simulator. The detailed analysis reveals two main crosstalk sources: concentric coils and adjacent coils. To suppress these crosstalks, this paper proposes two corresponding countermeasures: shorted coils and 8-shaped coils. The combination of these coils improves area efficiency by a factor of 4 in simulation. The proposed methods enable an area-efficient inductive coupling interface for high-bandwidth stacked memory.

  • Optimal Design of Optical Waveguide Devices Utilizing Beam Propagation Method with ADI Scheme Open Access

    Akito IGUCHI  Yasuhide TSUJI  

     
    INVITED PAPER

      Pubricized:
    2022/05/20
      Vol:
    E105-C No:11
      Page(s):
    644-651

    This paper shows structural optimal design of optical waveguide components utilizing an efficient 3D frequency-domain and 2D time-domain beam propagation method (BPM) with an alternating direction implicit (ADI) scheme. Usual optimal design procedure is based on iteration of numerical simulation, and total computational cost of the optimal design mainly depends on the efficiency of numerical analysis method. Since the system matrices are tridiagonal in the ADI-based BPM, efficient analysis and optimal design are available. Shape and topology optimal design shown in this paper is based on optimization of density distribution and sensitivity analysis to the density parameters. Computational methods of the sensitivity are shown in the case of using the 3D semi-vectorial and 2D time-domain BPM based on ADI scheme. The validity of this design approach is shown by design of optical waveguide components: mode converters, and a polarization beam splitter.

  • Loosening Bolts Detection of Bogie Box in Metro Vehicles Based on Deep Learning

    Weiwei QI  Shubin ZHENG  Liming LI  Zhenglong YANG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2022/07/28
      Vol:
    E105-D No:11
      Page(s):
    1990-1993

    Bolts in the bogie box of metro vehicles are fasteners which are significant for bogie box structure. Effective loosening bolts detection in early stage can avoid the bolt loss and accident occurrence. Recently, detection methods based on machine vision are developed for bolt loosening. But traditional image processing and machine learning methods have high missed rate and false rate for bolts detection due to the small size and complex background. To address this problem, a loosening bolts defection method based on deep learning is proposed. The proposed method cascades two stages in a coarse-to-fine manner, including location stage based on the Single Shot Multibox Detector (SSD) and the improved SSD sequentially localizing the bogie box and bolts and a semantic segmentation stage with the U-shaped Network (U-Net) to detect the looseness of the bolts. The accuracy and effectiveness of the proposed method are verified with images captured from the Shanghai Metro Line 9. The results show that the proposed method has a higher accuracy in detecting the bolts loosening, which can guarantee the stable operation of the metro vehicles.

  • An Underwater DOA Estimation Method under Unknown Acoustic Velocity with L-Shaped Array for Wide-Band Signals

    Gengxin NING  Yushen LIN  Shenjie JIANG  Jun ZHANG  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2022/03/09
      Vol:
    E105-A No:9
      Page(s):
    1289-1297

    The performance of conventional direction of arrival (DOA) methods is susceptible to the uncertainty of acoustic velocity in the underwater environment. To solve this problem, an underwater DOA estimation method with L-shaped array for wide-band signals under unknown acoustic velocity is proposed in this paper. The proposed method refers to the idea of incoherent signal subspace method and Root-MUSIC to obtain two sets of average roots corresponding to the subarray of the L-shaped array. And the geometric relationship between two vertical linear arrays is employed to derive the expression of DOA estimation with respect to the two average roots. The acoustic velocity variable in the DOA estimation expression can be eliminated in the proposed method. The simulation results demonstrate that the proposed method is more accurate and robust than other methods in an unknown acoustic velocity environment.

  • A Multi-Layer SIW Resonator Loaded with Asymmetric E-Shaped Slot-Lines for a Miniaturized Tri-Band BPF with Low Radiation Loss

    Weiyu ZHOU  Satoshi ONO  Koji WADA  

     
    PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2021/12/27
      Vol:
    E105-C No:7
      Page(s):
    349-357

    This paper proposes a novel multi-layer substrate integrated waveguide (SIW) resonator loaded with asymmetric E-shaped slot-lines and shows a tri-band band-pass filter (BPF) using the proposed structure. In the previous literature, various SIW resonators have been proposed to simultaneously solve the problems of large area and high insertion loss. Although these SIWs have a lower insertion loss than planar-type resonators using a printed circuit board, the size of these structures tends to be larger. A multi-layer SIW resonator loaded with asymmetric E-shaped slot-lines can solve the above problems and realize a tri-band BPF without increasing the size to realize further miniaturization. The theoretical design method and the structural design are shown. Moreover, the configured structure is fabricated and measured for showing the validity of the design method in this paper.

  • Joint Wideband Spectrum and DOA Estimation with Compressed Sampling Based on L-Shaped Co-Prime Array

    Wanghan LV  Lihong HU  Weijun ZENG  Huali WANG  Zhangkai LUO  

     
    PAPER-Analog Signal Processing

      Pubricized:
    2022/01/21
      Vol:
    E105-A No:7
      Page(s):
    1028-1037

    As known to us all, L-shaped co-prime array (LCA) is a recently introduced two-dimensional (2-D) sparse array structure, which is extended from linear co-prime array (CA). Such sparse array geometry can be used for 2-D parameters estimation with higher degrees-of-freedom (DOF). However, in the scenario where several narrowband transmissions spread over a wide spectrum, existing technique based on LCA with Nyquist sampling may encounter a bottleneck for both analog and digital processing. To alleviate the burden of high-rate Nyquist sampling, a method of joint wideband spectrum and direction-of-arrival (DOA) estimation with compressed sampling based on LCA, which is recognized as LCA-based modulated wideband converter (MWC), is presented in this work. First, the received signal along each antenna is mixed to basebands, low-pass filtered and down-sampled to get the compressed sampling data. Then by constructing the virtual received data of 2-D difference coarray, we estimate the wideband spectrum and DOA jointly using two recovery methods where the first is a joint ESPRIT method and the other is a joint CS method. Numerical simulations illustrate the validity of the proposed LCA based MWC system and show the superiority.

  • A Study on Gain Enhanced Leaf-Shaped Bow-Tie Slot Array Antenna within Quasi-Millimeter Wave Band

    Mangseang HOR  Takashi HIKAGE  Manabu YAMAMOTO  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2021/09/30
      Vol:
    E105-B No:3
      Page(s):
    285-294

    In this paper, a linear array of 4 leaf-shaped bowtie slot antennas is proposed for use in quasi-millimeter wave band. The slot antennas array is designed to operate at 28GHz frequency band. The leaf-shaped bowtie slot antenna is a type of self-complementary antenna with low profile and low cost of fabrication. The proposed antenna structure offers improvement in radiation pattern, gain, and -10dB impedance bandwidth. Through out of this paper radiation pattern, actual gain, and -10dB impedance bandwidth are evaluated by Finite Different Time Domain (FDTD) simulation. Antenna characteristics are analyzed in the frequency range of 27GHz to 29GHz. To improve antenna characteristics such as actual gain and -10dB impedance bandwidth, a dielectric superstrate layer with relative permittivity of 10.2 is placed on top of ground plane of the slot antennas array. Three antenna structures are introduced and compared. With two layers of dielectric superstrate on top of the antennas ground plane, analysis results show that -10dB impedance bandwidth occupies the frequency range of 27.17GHz to 28.39GHz. Therefore, the operational impedance bandwidth is 1.22GHz. Maximum actual gain of the slot antennas array with two dielectric superstrate layers is 20.49dBi and -3dB gain bandwidth occupies the frequency range of 27.02GHz to 28.57GHz. To validate the analysis results, prototype of the designed slot antennas array is fabricated. Characteristics of the slot antennas array are measured and compared with the analysis results.

  • Individuality-Preserving Silhouette Extraction for Gait Recognition and Its Speedup

    Masakazu IWAMURA  Shunsuke MORI  Koichiro NAKAMURA  Takuya TANOUE  Yuzuko UTSUMI  Yasushi MAKIHARA  Daigo MURAMATSU  Koichi KISE  Yasushi YAGI  

     
    PAPER-Pattern Recognition

      Pubricized:
    2021/03/24
      Vol:
    E104-D No:7
      Page(s):
    992-1001

    Most gait recognition approaches rely on silhouette-based representations due to high recognition accuracy and computational efficiency. A fundamental problem for those approaches is how to extract individuality-preserved silhouettes from real scenes accurately. Foreground colors may be similar to background colors, and the background is cluttered. Therefore, we propose a method of individuality-preserving silhouette extraction for gait recognition using standard gait models (SGMs) composed of clean silhouette sequences of various training subjects as shape priors. The SGMs are smoothly introduced into a well-established graph-cut segmentation framework. Experiments showed that the proposed method achieved better silhouette extraction accuracy by more than 2.3% than representative methods and better identification rate of gait recognition (improved by more than 11.0% at rank 20). Besides, to reduce the computation cost, we introduced approximation in the calculation of dynamic programming. As a result, without reducing the segmentation accuracy, we reduced 85.0% of the computational cost.

  • An Extended Scheme for Shape Matching with Local Descriptors

    Kazunori IWATA  Hiroki YAMAMOTO  Kazushi MIMURA  

     
    PAPER-Pattern Recognition

      Pubricized:
    2020/10/27
      Vol:
    E104-D No:2
      Page(s):
    285-293

    Shape matching with local descriptors is an underlying scheme in shape analysis. We can visually confirm the matching results and also assess them for shape classification. Generally, shape matching is implemented by determining the correspondence between shapes that are represented by their respective sets of sampled points. Some matching methods have already been proposed; the main difference between them lies in their choice of matching cost function. This function measures the dissimilarity between the local distribution of sampled points around a focusing point of one shape and the local distribution of sampled points around a referring point of another shape. A local descriptor is used to describe the distribution of sampled points around the point of the shape. In this paper, we propose an extended scheme for shape matching that can compensate for errors in existing local descriptors. It is convenient for local descriptors to adopt our scheme because it does not require the local descriptors to be modified. The main idea of our scheme is to consider the correspondence of neighboring sampled points to a focusing point when determining the correspondence of the focusing point. This is useful because it increases the chance of finding a suitable correspondence. However, considering the correspondence of neighboring points causes a problem regarding computational feasibility, because there is a substantial increase in the number of possible correspondences that need to be considered in shape matching. We solve this problem using a branch-and-bound algorithm, for efficient approximation. Using several shape datasets, we demonstrate that our scheme yields a more suitable matching than the conventional scheme that does not consider the correspondence of neighboring sampled points, even though our scheme requires only a small increase in execution time.

  • Revisiting a Nearest Neighbor Method for Shape Classification

    Kazunori IWATA  

     
    PAPER-Pattern Recognition

      Pubricized:
    2020/09/23
      Vol:
    E103-D No:12
      Page(s):
    2649-2658

    The nearest neighbor method is a simple and flexible scheme for the classification of data points in a vector space. It predicts a class label of an unseen data point using a majority rule for the labels of known data points inside a neighborhood of the unseen data point. Because it sometimes achieves good performance even for complicated problems, several derivatives of it have been studied. Among them, the discriminant adaptive nearest neighbor method is particularly worth revisiting to demonstrate its application. The main idea of this method is to adjust the neighbor metric of an unseen data point to the set of known data points before label prediction. It often improves the prediction, provided the neighbor metric is adjusted well. For statistical shape analysis, shape classification attracts attention because it is a vital topic in shape analysis. However, because a shape is generally expressed as a matrix, it is non-trivial to apply the discriminant adaptive nearest neighbor method to shape classification. Thus, in this study, we develop the discriminant adaptive nearest neighbor method to make it slightly more useful in shape classification. To achieve this development, a mixture model and optimization algorithm for shape clustering are incorporated into the method. Furthermore, we describe several helpful techniques for the initial guess of the model parameters in the optimization algorithm. Using several shape datasets, we demonstrated that our method is successful for shape classification.

  • A 2D-DOA Estimation Algorithm for Double L-Shaped Array in Unknown Sound Velocity Environment

    Gengxin NING  Shenjie JIANG  Xuejin ZHAO  Cui YANG  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2019/09/06
      Vol:
    E103-B No:3
      Page(s):
    240-246

    This paper presents a two-dimensional (2D) DOA algorithm for double L-shaped arrays. The algorithm is applied to the underwater environment for eliminating the performance error caused by the sound speed uncertainty factor. By introducing the third dimensional array, the algorithm eliminates the sound velocity variable in the depression angle expression, so that the DOA estimation no longer considering the true value of unknown sound velocity. In order to determine the parameters of a three-dimensional array, a parameter matching method with the double L-shaped array is also proposed. Simulations show that the proposed algorithm outperforms the conventional 2D-DOA estimation algorithm in unknown sound velocity environment.

  • Software-Based Time-Aware Shaper for Time-Sensitive Networks Open Access

    Yasin OGE  Yuta KOBAYASHI  Takahiro YAMAURA  Tomonori MAEGAWA  

     
    PAPER-Network

      Pubricized:
    2019/09/09
      Vol:
    E103-B No:3
      Page(s):
    167-180

    This paper presents the design, implementation, and evaluation of a time-aware shaper, which is a traffic shaper specifically designed for IEEE 802.1Qbv-compliant time-sensitive networks. The proposed design adopts a software-based approach rather than using a dedicated custom logic chip such as an ASIC or FPGA. In particular, the proposed approach includes a run-time scheduler and a network interface card (NIC) that supports a time-based transmission scheme (i.e., launch-time feature). The run-time scheduler prefetches information (i.e., gate control entry) ahead of time from a given gate control list. With the prefetched information, the scheduler determines a launch time for each frame, and the NIC controls the time at which the transmission of each frame is started in a highly punctual manner. Evaluation results show that the proposed shaper triggers transmission of multiple time-sensitive streams at their intended timings in accordance with a given gate control list, even in the presence of high-bandwidth background traffic. Furthermore, we compare the timing accuracy of frame transmission with and without use of the launch-time feature of the NIC. Results indicate that the proposed shaper significantly reduces jitter of time-sensitive streams (to less than 0.1 µs) unlike a baseline implementation that does not use the launch-time feature.

  • Sampling Shape Contours Using Optimization over a Geometric Graph

    Kazuya OSE  Kazunori IWATA  Nobuo SUEMATSU  

     
    PAPER-Pattern Recognition

      Pubricized:
    2019/09/11
      Vol:
    E102-D No:12
      Page(s):
    2547-2556

    Consider selecting points on a contour in the x-y plane. In shape analysis, this is frequently referred to as contour sampling. It is important to select the points such that they effectively represent the shape of the contour. Generally, the stroke order and number of strokes are informative for that purpose. Several effective methods exist for sampling contours drawn with a certain stroke order and number of strokes, such as the English alphabet or Arabic figures. However, many contours entail an uncertain stroke order and number of strokes, such as pictures of symbols, and little research has focused on methods for sampling such contours. This is because selecting the points in this case typically requires a large computational cost to check all the possible choices. In this paper, we present a sampling method that is useful regardless of whether the contours are drawn with a certain stroke order and number of strokes or not. Our sampling method thereby expands the application possibilities of contour processing. We formulate contour sampling as a discrete optimization problem that can be solved using a type of direct search. Based on a geometric graph whose vertices are the points and whose edges form rectangles, we construct an effective objective function for the problem. Using different shape datasets, we demonstrate that our sampling method is effective with respect to shape representation and retrieval.

  • A Highly Efficient Wideband Two-Dimensional Direction Estimation Method with L-Shaped Microphone Array

    Bandhit SUKSIRI  Masahiro FUKUMOTO  

     
    PAPER-Digital Signal Processing

      Vol:
    E102-A No:11
      Page(s):
    1457-1472

    This paper presents an efficient wideband two-dimensional direction-of-arrival (DOA) estimation for an L-shaped microphone array. We propose a way to construct a wideband sample cross-correlation matrix without any process of DOA preliminary estimation, such as beamforming technique, by exploiting sample cross-correlation matrices of two different frequencies for all frequency bins. Subsequently, wideband DOAs can be estimated by using this wideband matrix along with a scheme of estimating DOA in a narrowband subspace method. Therefore, a contribution of our study is providing an alternative framework for recent narrowband subspace methods to estimating the DOA of wideband sources directly. It means that this framework enables cutting-edge techniques in the existing narrowband subspace methods to implement the wideband direction estimation for reducing the computational complexity and facilitating the estimation algorithm. Theoretical analysis and effectiveness of the proposed method are substantiated through numerical simulations and experiments, which are performed in reverberating environments. The results show that performance of the proposed method performs better than others over a range of signal-to-noise ratio with just a few microphones. All these advantages make the proposed method a powerful tool for navigation systems based on acoustic signal processing.

  • A Closed-Form of 2-D Maximally Flat Diamond-Shaped Half-Band FIR Digital Filters with Arbitrary Difference of the Filter Orders Open Access

    Taiki SHINOHARA  Takashi YOSHIDA  Naoyuki AIKAWA  

     
    PAPER-Digital Signal Processing

      Vol:
    E102-A No:3
      Page(s):
    518-523

    Two-dimensional (2-D) maximally flat finite impulse response (FIR) digital filters have flat characteristics in both passband and stopband. 2-D maximally flat diamond-shaped half-band FIR digital filter can be designed very efficiently as a special case of 2-D half-band FIR filters. In some cases, this filter would require the reduction of the filter lengths for one of the axes while keeping the other axis unchanged. However, the conventional methods can realize such filters only if difference between each order is 2, 4 and 6. In this paper, we propose a closed-form frequency response of 2-D low-pass maximally flat diamond-shaped half-band FIR digital filters with arbitrary filter orders. The constraints to treat arbitrary filter orders are firstly proposed. Then, a closed-form transfer function is achieved by using Bernstein polynomial.

  • Axis-Symmetric Twisted-Vertical Alignment-Mode Using Mortar-Shaped Structure for High-Contrast Reflective LCDs with Fast Response

    Yutaro KUGE  Yosei SHIBATA  Takahiro ISHINABE  Hideo FUJIKAKE  

     
    BRIEF PAPER

      Vol:
    E101-C No:11
      Page(s):
    892-896

    We have proposed a mortar-shaped structure to improve response time and alignment uniformity of twisted vertically aligned (TVA) mode liquid crystal displays (LCDs) for high-contrast reflective color LCDs. From the results of the simulation, we clarified that response time, alignment uniformity and viewing angle range of TVA-mode LCDs were improved by controlling the liquid crystal alignment axis-symmetrically in each pixel.

  • Objective Evaluation of Impression of Faces with Various Female Hairstyles Using Field of Visual Perception

    Naoyuki AWANO  Kana MOROHOSHI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2018/03/22
      Vol:
    E101-D No:6
      Page(s):
    1648-1656

    Most people are concerned about their appearance, and the easiest way to change the appearance is to change the hairstyle. However, except for professional hairstylists, it is difficult to objectively judge which hairstyle suits them. Currently, oval faces are generally said to be the ideal facial shape in terms of suitability to various hairstyles. Meanwhile, field of visual perception (FVP), proposed recently in the field of cognitive science, has attracted attention as a model to represent the visual perception phenomenon. Moreover, a computation model for digital images has been proposed, and it is expected to be used in quantitative evaluation of sensibility and sensitivity called “kansei.” Quantitative evaluation of “goodness of patterns” and “strength of impressions” by evaluating distributions of the field has been reported. However, it is unknown whether the evaluation method can be generalized for use in various subjects, because it has been applied only to some research subjects, such as characters, text, and simple graphics. In this study, for the first time, we apply FVP to facial images with various hairstyles and verify whether it has the potential of evaluating impressions of female faces. Specifically, we verify whether the impressions of facial images that combine various facial shapes and female hairstyles can be represented using FVP. We prepare many combinational images of facial shapes and hairstyles and conduct a psychological experiment to evaluate their impressions. Moreover, we compute the FVP of each image and propose a novel evaluation method by analyzing the distributions. The conventional and proposed evaluation values correlated to the psychological evaluation values after normalization, and demonstrated the effectiveness of the FVP as an image feature quantity to evaluate faces.

  • Full-Automatic Optic Disc Boundary Extraction Based on Active Contour Model with Multiple Energies

    Yuan GAO  Chengdong WU  Xiaosheng YU  Wei ZHOU  Jiahui WU  

     
    LETTER-Vision

      Vol:
    E101-A No:3
      Page(s):
    658-661

    Efficient optic disc (OD) segmentation plays a significant role in retinal image analysis and retinal disease screening. In this paper, we present a full-automatic segmentation approach called double boundary extraction for the OD segmentation. The proposed approach consists of the following two stages: first, we utilize an unsupervised learning technology and statistical method based on OD boundary information to obtain the initial contour adaptively. Second, the final optic disc boundary is extracted using the proposed LSO model. The performance of the proposed method is tested on the public DIARETDB1 database and the experimental results demonstrate the effectiveness and advantage of the proposed method.

  • 2-D DOA Estimation of Multiple Signals Based on Sparse L-Shaped Array

    Zhi ZHENG  Yuxuan YANG  Wen-Qin WANG  Guangjun LI  Jiao YANG  Yan GE  

     
    PAPER-DOA Estimation

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    383-391

    This paper proposes a novel method for two-dimensional (2-D) direction-of-arrival (DOA) estimation of multiple signals employing a sparse L-shaped array structured by a sparse linear array (SLA), a sparse uniform linear array (SULA) and an auxiliary sensor. In this method, the elevation angles are estimated by using the SLA and an efficient search approach, while the azimuth angle estimation is performed in two stages. In the first stage, the rough azimuth angle estimates are obtained by utilizing a noise-free cross-covariance matrix (CCM), the estimated elevation angles and data from three sensors including the auxiliary sensor. In the second stage, the fine azimuth angle estimates can be achieved by using the shift-invariance property of the SULA and the rough azimuth angle estimates. Without extra pair-matching process, the proposed method can achieve automatic pairing of the 2-D DOA estimates. Simulation results show that our approach outperforms the compared methods, especially in the cases of low SNR, snapshot deficiency and multiple sources.

1-20hit(193hit)