The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] tin(3578hit)

3481-3500hit(3578hit)

  • Future Broadcasting Technologies: Perspectives and Trends

    Osamu YAMADA  Ichiro YUYAMA  

     
    INVITED PAPER

      Vol:
    E76-B No:6
      Page(s):
    592-598

    This paper briefly considers future broadcasting technologies, including digital television as a system for the near future and three-dimensional television as a part of a system to be developed rather later. However, due to limitations of space, this paper discusses only video technologies in detail. First, the status of bit reduction technologies for digital television is described and then satellite digital broadcasting and terrestrial digital broadcasting are also discussed. The authors stress the necessity of the further development of digital video compression technologies. Later, we discuss three-dimensional television, we describe requirements for the service and the present status of the technologies. And last, the paper considers the future prospects for a three-dimensional television service.

  • Optical Multiplex Computing Based on Set-Valued Logic and Its Application to Parallel Sorting Networks

    Shuichi MAEDA  Takafumi AOKI  Tatsuo HIGUCHI  

     
    PAPER-Optical Logic

      Vol:
    E76-D No:5
      Page(s):
    605-615

    A new computer architecture using multiwavelength optoelectronic integrated circuits (OEICs) is proposed to attack the problems caused by interconnection complexity. Multiwavelength-OEIC architecures, where various wavelengths are employed as information carriers, provide the wavelength as an extra dimension of freedom for parallel processing, so that we can perform several independent computations in parallel in a single optical module using the wavelength space. This multiplex computing" enables us to reduce the wiring area required by a network and improve their complexity. In this paper, we discuss the efficient multiplexing of Batcher's bitonic sorting networks, highly parallel computing architectures that require global interconnections inherently. A systematic multiplexing of interconnection topology is presented using a binary representation of the connectivities of interconnection paths. It is shown that the wiring area can be reduced by a factor of 1/r2 using r kinds of wavelength components.

  • Single Minimum Method for Combinatorial Optimization Problems and Its Application to the TSP Problem

    Dan XU  Itsuo KUMAZAWA  

     
    PAPER-Neural Nets--Theory and Applications--

      Vol:
    E76-A No:5
      Page(s):
    742-748

    The problem of local minima is inevitable when solving combinatorial optimization problems by conventional methods such as the Hopfield network, relying on the minimization of an objective function E(X). Such a problem arises from the search mechanism in which only the local information about the objective function E(X) is used. In this paper we propose a new approach called the Single Minimum Method (SMM) which uses the global information in searching for the solutions to combinatorial optimization problems. In this approach, we add a function -TS(X) to the original objective function E(X) to construct the function F(X)=E(X)-TS(X) which has only one minimum, one which can be easily found by any general gradiet method including the Hopfield network. Based on an analogy between thermodynamic systems and neural networks, it is shown that the global information about the original objective function E(X) is included in the single minimum of the function F(X) and can be used for finding the global minimum of the objective function E(X). In order to show how to apply the Single Minimum Method to a combinatorial optimization problem we give an algorithm for the TSP problem based on our method. The simulation results show that the algorithm can almost always find the shortest or near shortest paths. Finally, a modified SMM, which has some great advantages for hardware implementation, is also given.

  • Multiple Destination Routing Algorithms

    Yoshiaki TANAKA  Paul C. HUANG  

     
    INVITED PAPER-Communication Networks and Service

      Vol:
    E76-B No:5
      Page(s):
    544-552

    With the arrival of B-ISDN, point-to-point routing alone is no longer adequate. A new class of computer and video related services, such as mass mailing, TV broadcasting, teleconferencing, and video 900 service, requires the network to handle multiple destination routing (MDR). Multiple destination routing enables widespread usage of multipoint services at a lower cost than networks using point-to-point routing. With this in mind, network providers are researching more into MDR algorithms. However, the MDR problem itself is very complex. Furthermore, its optimal solution, the Steiner tree problem, is NP-complete and thus not suitable for real-time applications. Recently, various algorithms which approximate the Steiner tree problem have been proposed and, in this invited paper, we will summarize the simulation results of these algorithms. But first, we will define the MDR problem, the issues involved, and the benchmark used to compare MDR algorithms. Then, we will categorize the existing MDR algorithms into a five-level classification tree. Lastly, we will present various published results of static algorithms and our own simulation results of quasi-static algorithms.

  • Quantum Theory, Computing and Chaotic Solitons

    Paul J. WERBOS  

     
    PAPER-Chaos and Related Topics

      Vol:
    E76-A No:5
      Page(s):
    689-694

    This paper describes new methematical tools, taken from quantum field theory (QFT), which may make it possible to characterize localized excitations (including solitons, but also including chaotic modes) generated by PDE systems. The significance to computer hardware and neurocomputing is also discussed. This mathematics--IF further developed--may also have the potential to reorganize and simplify our understanding of QFT itself--a topic of very great intellectual and practical importance. The paper concludes by describing three new possibilities for research, which will be very important to achieving these goals.

  • The Efficient GMD Decoders for BCH Codes

    Kiyomichi ARAKI  Masayuki TAKADA  Masakatsu MORII  

     
    PAPER-Error Correcting Codes

      Vol:
    E76-D No:5
      Page(s):
    594-604

    In this paper, we provide an efficient algorithm for GMD (Generalized Minimum Distance) decoding of BCH codes over q-valued logic, when q is pl (p: prime number, l: positive integer). An algebraic errors-and-erasures decoding procedure is required to execute only one time, whereas in a conventional GMD decoding at mostd/2algebraic decodings are necessary, where d is the design distance of the code. In our algorithm, Welch-Berlekamp's iterative method is efficiently employed to reduce the number of algebraic decoding procedures. We also show a method for hardware implementation of this GMD decoding based on q-valued logic.

  • Velocity Field Estimation Using a Weighted Local Optimization

    Jung-Hee LEE  Seong-Dae KIM  

     
    LETTER-Parallel/Multidimensional Signal Processing

      Vol:
    E76-A No:4
      Page(s):
    661-663

    Gradient-based methods for the computation of the velocity from image sequences assume that the velocity field varies smoothly over image. This creates difficulties at regions where the image intensity changes abruptly such as the occluding contours or region boundaries. In this letter, we propose a method to overcome these difficulties by incorporating the information of discontinuities in image intensity into a standard local optimization method. The presented method is applied to the synthetic and real images. The results show that the velocity field computed by the proposed method is less blurred at region boundaries than that of the standard method.

  • A Text-Independent Off-Line Writer Identification Method for Japanese and Korean Sentences

    Mitsu YOSHIMURA  Isao YOSHIMURA  Hyun Bin KIM  

     
    PAPER

      Vol:
    E76-D No:4
      Page(s):
    454-461

    This paper proposes an off-line text-independent writer identification method applicable to Japanese and Korean sentences. It is assumed that the writer of a writing in question exists in a certain group of people and that reference writings written by each person in the group can be used for identification. In the proposed method, relative frequencies of some model patterns are counted on the binary pattern of each writing and are used as the feature to measure the distance between two writings. Based on a modified Mahalanobis' distance for this feature, the person whose reference writing is nearest to the writing in question is judged as the writer. The effectiveness of the proposed method is examined through an experiment using Japanese and Korean writings. Error rates in the experiment were different depending on conditions such as volume of reference writings, dimension of adopted features, and number of people to be identified. In some cases, error rates as low as 0% were observed. Error rates tend to be lower in Korean writings probably because Hangul is composed of a smaller number of letters compared to Kanji and Hiragana in Japanese writing.

  • Robustness of the Memory-Based Reasoning Implemented by Wafer Scale Integration

    Moritoshi YASUNAGA  Hiroaki KITANO  

     
    PAPER-Fault Tolerant Computing

      Vol:
    E76-D No:3
      Page(s):
    336-344

    The Memory-Based Reasoning (MBR) is one of the mainstay approaches in massively parallel artificial intelligence research. However, it has not been explored from the viewpoint of hardware implementation. This paper demonstrates high robustness of the MBR, which is suitable for hardware implementation using Wafer Scale Integration (WSI) technology, and proposes a design of WSI-MBR hardware. The robustness is evaluated by a newly developed WSI-MBR simulator in the English pronunciation reasoning task, generally known as MBRTalk. The results show that defects or other fluctuations of device parameters have only minor impacts on the performances of the WSI-MBR. Moreover, it is found that in order to get higher reasoning accuracy, the size of the MBR database is much more crucial than the computation resolution. These features are proved to be caused by the fact that MBR does not rely upon each single data unit but upon a bulk data set. Robustness in the other MBR tasks can be evaluated in the same manner as discussed in this paper. The proposed WSI-MBR processor takes advantage of benefits discovered in the simulation results. The most area-demanding circuits--that is, multipliers and adders--are designed by analog circuits. It is expected that the 1.7 million processors will be integrated onto the 8-inch silicon wafer by the 0.3 µm SRAM technology.

  • Polarization Diplexing by a Double Strip Grating Loaded with a Pair of Dielectric Slabs

    Akira MATSUSHIMA  Tokuya ITAKURA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E76-C No:3
      Page(s):
    486-495

    An accurate numerical solution is presented for the electromagnetic scattering from a double strip grating, where the strip planes are each supported by a dielectric slab. This structure is a model of polarization diplexers. The direction of propagation and the polarization of the incident plane wave are arbitrary. We derive a set of singular integral equations and solve it by the moment method, where the Chebyshev polynomials are successfully used as the basis and the testing functions. By numerical computations we examine the dependence of the diplexing properties on grating parameters in detail. The cross-polarization characteristics at skew incidence are also referred. From these results we construct an algorithm for the design of polarization diplexers.

  • Periodic Responses of a Hysteresis Neuron Model

    Simone GARDELLA  Ryoichi HASHIMOTO  Tohru KUMAGAI  Mitsuo WADA  

     
    PAPER-Bio-Cybernetics

      Vol:
    E76-D No:3
      Page(s):
    368-376

    A discrete-time neuron model having a refractory period and containing a binary hysteresis output function is introduced. A detailed mathematical analysis of the output response is carried out and the necessary and sufficient condition which a sequence must satisfy in order to be designated as a periodic response of the neuron model under a constant or periodic stimulation is given.

  • Rule-Programmable Multiple-Valued Matching VLSI Processor for Real-Time Rule-Based Systems

    Takahiro HANYU  Koichi TAKEDA  Tatsuo HIGUCHI  

     
    PAPER

      Vol:
    E76-C No:3
      Page(s):
    472-479

    This paper presents a design of a new multiple-valued matching VLSI processor for high-speed reasoning. It is useful in the application for real-time rule-based systems with large knowledge bases which are programmable. In order to realize high-speed reasoning, the matching VLSI processor can perform the fully parallel pattern matching between an input data and rules. On the based of direct multiple-valued encoding of each attribute in an input data and rules, pattern matching can be described by using only a programmable delta literal. Moreover, the programmable delta literal circuit can be easily implemented using two kinds of floating-gate MOS devices whose threshold voltages are controllable. In fact, it is demonstrated that four kinds of threshold voltages in a practical floating-gate MOS device can be easily programmable by appropriately controlling the gate, the drain and the source voltage. Finally, the inference time of the quaternary matching VLSI processor with 256 rules and conflict resolution circuits is estimated at about 360 (ns), and the chip area is reduced to about 30 percent, in comparison with the equivalent binary implementation.

  • Applying OSI Systems Management Standards to Remotely Controlled Virtual Path Testing in ATM Networks

    Satoru OHTA  Nobuo FUJII  

     
    PAPER

      Vol:
    E76-B No:3
      Page(s):
    280-290

    Asynchronous Transfer Mode (ATM) is an information transport technique that well supports Broadband ISDN (B-ISDN). One unsolved problem to the perfection of ATM networks is to provide a testing environment that conforms to some standardized network management scheme. From this point of view, remotely controlled virtual path testing is considered in this paper. Remotely controlled virtual path testing should be executed through the standardized Telecommunications Management Network (TMN) model, which employs the OSI systems management concept as the basis of information exchange. Thus, this paper addresses the two issues that arise when OSI systems management standards are applied to virtual path testing. One issue is to define relevant information models. The other issue is to provide test resources with a concurrency control mechanism that guarantees a consistent test environment without causing deadlocks. To resolve these issues, technical requirements are clarified for the remote control of test resources. Next, alternatives to the concurrency control mechanism are shown and compared through computer simulations. A method of defining information models is then proposed. The proposed method ensures the easy storage and retrieval of intermediate test results as well as permitting the effective provision of concurrency control for test resources. An application scenario is also derived. The scenario shows that tests can be executed by using standardized communication services. These results confirm that virtual path testing can be successfully achieved in conformance with the OSI systems management standards.

  • Effects of Antenna Beam Horizontal Rotating and Beam Tilting on Delay Spread Reduction in Mobile Radio

    Tetsu TANAKA  Shigeru AOYAMA  Shigeru KOZONO  

     
    LETTER

      Vol:
    E76-B No:2
      Page(s):
    159-162

    Theoretical and experimental evaluations of the horizontal rotating and tilting of the base station antenna beam show that these techniques are effective in reducing delay spread. Result show good agreement between predicted and measured values.

  • Scattering of Electromagnetic Plane Waves by a Grating with Several Strips Arbitrarily Oriented in One Period

    Michinari SHIMODA  Tokuya ITAKURA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E76-C No:2
      Page(s):
    326-337

    The problem of two-dimensional scattering of electromagnetic waves by a grating with several strips arbitrarily oriented in one period is analyzed by means of the Wiener-Hopf technique together with the formulation using the concept of the mutual field. A formulation for the analysis of multiple scattering from the grating is based on the representation of the scattered field by a grating composed of one strip in one period. The Wiener-Hopf equations and a representation of the scattered wave are obtained. The characteristic of the sampling function is used to expand the unknown function associated with the field on the strip into a series, and then the Wiener-Hopf equations are reduced to a set of simultaneous equations. For evaluation of the convergence and the errors in the numerical results, the relative error with respect to the extrapolated value and the square error for satisfaction of the boundary condition are computed. From numerical comparison of the present method with other various methods, it is found that the present method provides us accurate results. Some numerical examples of the reflection coefficients are presented for the reflection grating and transmission gratings.

  • Graph Rewriting Systems and Their Application to Network Reliability Analysis

    Yasuyoshi OKADA  Masahiro HAYASHI  

     
    PAPER-Automaton, Language and Theory of Computing

      Vol:
    E76-D No:2
      Page(s):
    154-162

    We propose a new type of Graph Rewriting Systems (GRS) that provide a theoretical foundation for using the reduction method which plays an important role on analyze network reliability. By introducing this GRS, several facts were obtained as follows: (1) We clarified the reduction methods of network reliability analysis in the theoretical framework of GRS. (2) In the framework of GRS, we clarified the significance of the completeness in the reduction methods. (3) A procedure of recognizing complete systems from only given rewriting rules was shown. Specially the procedure (3) is given by introducing a boundary graph (B-Graph). Finally an application of GRS to network reliability analysis is shown.

  • Reconfiguration Algorithm for Modular Redundant Linear Array

    Chang CHEN  An FENG  Yoshiaki KAKUDA  Tohru KIKUNO  

     
    PAPER-Fault Tolerant Computing

      Vol:
    E76-D No:2
      Page(s):
    210-218

    A typical fault-tolerance technique of systolic arrays is to include redundant processors and links so that the array is reconfigurable when some processors fail. Another typical technique is to implement each processor by a majority voter and N (N3) copies of processors so that the faults of up to N-2 copies of processors can be masked without reconfiguration. This paper proposes a systolic linear array called reconfigurable modular redundant linear array (RMA) that combines these techniques with N4. When up to 2 copies of each processor fail in RMA, the faults can be masked without reconfiguration. When some voters or more than 2 copies of a processor fail, RMA can be reconfigured by specifying a new switch pattern. In order to perform reconfiguration efficiently, we present a reconfiguration algorithm with time complexity O (n), where n is the number of processors in RMA.

  • A Parallel Algorithm for the Maximal Co-Hitting Set Problem

    Takayoshi SHOUDAI  Satoru MIYANO  

     
    LETTER-Algorithm and Computational Complexity

      Vol:
    E76-D No:2
      Page(s):
    296-298

    Let C{c1, , cm} be a family of subsets of a finite set S{1, , n}, a subset S of S is a co-hitting set if S contains no element of C as a subset. By using an O((log n)2) time EREW PRAM algorithm for a maximal independent set problem (MIS), we show that a maximal co-hitting set for S can be computed on an EREW PRAN in time O(αβ(log(nm))2) using O(n2 m) processors, where αmax{|cii1, , n} and βmax{|djj1, , n} with dj{ci|jci}. This implies that if αβO((log(nm))k) then the problem is solvable in NC.

  • Optical Waveguide Phase Controller for Microwave Signals Generated by Heterodyne Photodetection

    Yoshiaki KAMIYA  Wataru CHUJO  Masayuki FUJISE  

     
    LETTER-Fiber Optic Radio Links

      Vol:
    E76-C No:2
      Page(s):
    305-307

    This paper presents the successful performance of an optical waveguide phase controller for microwave signals generated by heterodyne photodetection. A 22 optical waveguide structure with four optical phase shifters was fabricated on a LiNbO3 substrate. As a result of heterodyne photodetection of two optical signals from wavelength-tunable laser diodes, two microwave signals at 585 MHz were generated and phase shifted in the manner of electro-optical phase retardation. The monolithic waveguide structure allowed linear phase shifting more than 1800 degrees. Similar phase shifting performances were also confirmed over a wide microwave frequency range from 300 MHz to 1.3 GHz. The optical waveguide structure demonstrated here will be applicable to fiber-optic fed microwave systems such as a phased array antenna.

  • High Tc Superconducting Active Antennas for 50GHz

    Toshiro OHNUMA  Takashi KUROKO  

     
    LETTER-Antennas and Propagation

      Vol:
    E76-B No:2
      Page(s):
    196-198

    High Tc superconducting (SC) active antennas made from thin films were produced by the magnetron sputtering method. The SC active antennas are found to be good for detecting 50GHz electromagnetic waves. Furthermore, the improvement of the sensitivity of the SC active antennas is demonstrated with the use of a corner reflector.

3481-3500hit(3578hit)