The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] tin(3578hit)

3301-3320hit(3578hit)

  • Error Correction/Detection Decoding Scheme of Binary Hamming Codes

    Chaehag YI  Jae Hong LEE  

     
    LETTER-Information Theory and Coding Theory

      Vol:
    E78-A No:8
      Page(s):
    1046-1048

    An error correction/detection decoding scheme of binary Hamming codes is proposed. Error correction is performed by algebraic decoding and then error detection is performed by simple likelihood ratio testing. The proposed scheme reduces the probability of undetected decoding error in comparison with conventional error correction scheme and increases throughjput in comparison with conventional error detection scheme.

  • Temperature Depending SAR Distribution in Human Body during Hyperthermia Treatment

    Yoshio NIKAWA  

     
    PAPER

      Vol:
    E78-C No:8
      Page(s):
    1063-1070

    The simulation of a specific absorption rate (SAR) with a temperature distribution becomes more important in the treatment planning for microwave hyperthermia. The simulation technique can also be used to estimate SAR distribution inside human body under hazardous electromagnetic (EM) field circumstances. In the simulation, to use exact permittivity of biological tissues becomes very important to obtain accurate SAR distribution. The permittivity of the medium is very sensitive to the temperature. Therefore, it is considered that the SAR distribution is also very sensitive to the tissue temperature. In this paper, SAR distribution is calculated using FDTD method considering tissue temperature under the electromagnetic (EM) field irradiation. Simulations of temperature distribution are also performed using heat transfer equation. In addition, temperature depending blood flow is taking into account to obtain temperature depending SAR distribution. The results can be used to estimate temperature depending heat generation which can be applied such as microwave hyperthermia treatment.

  • Discrete Time Cellular Neural Networks with Two Types of Neuron Circuits for Image Coding and Their VLSI Implementations

    Cong-Kha PHAM  Munemitsu IKEGAMI  Mamoru TANAKA  

     
    PAPER

      Vol:
    E78-A No:8
      Page(s):
    978-988

    This paper described discrete time Cellular Neural Networks (DT-CNN) with two types of neuron circuits for image coding from an analog format to a digital format and their VLSI implementations. The image coding methods proposed in this paper have been investigated for a purpose of transmission of a coded image and restoration again without a large loss of an original image information. Each neuron circuti of a network receives one pixel of an input image, and processes it with binary outputs data fed from neighboring neuron circuits. Parallel dynamics quantization methods have been adopted for image coding methods. They are performed in networks to decide an output binary value of each neuron circuit according to output values of neighboring neuron circuits. Delayed binary outputs of neuron circuits in a neighborhood are directly connected to inputs of a current active neuron circuit. Next state of a network is computed form a current state at some neuron circuits in any time interval. Models of two types of neuron circuits and networks are presented and simulated to confirm an ability of proposed methods. Also, physical layout designs of coding chips have been done to show their possibility of VLSI realizations.

  • Two-Tier Paging and Its Performance Analysis for Network-based Distributed Shared Memory Systems

    Chi-Jiunn JOU  Hasan S. ALKHATIB  Qiang LI  

     
    PAPER-Computer Networks

      Vol:
    E78-D No:8
      Page(s):
    1021-1031

    Distributed computing over a network of workstations continues to be an illusive goal. Its main obstacle is the delay penalty due to network protocol and OS overhead. We present in this paper a low level hardware supported scheme for managing distributed shared memory (DSM), as an underlying paradigm for distributed computing. The proposed DSM is novel in that it employs a two-tier paging scheme that reduces the probability of false sharing and facilitates an efficient hardware implementation. The scheme employs a standard OS page and divides it into fixed smaller memory units called paragraphs, similar to cache lines. This scheme manages the shared data regions only, while other regions are handled by the OS in the standard manner without modification. A hardware extension of a traditional MMU, namely Distributed MMU or DMMU, is introduced to support the DSM. Shared memory coherency is maintained through a write-invalidate protocol. An analytical model is built to evaluate the system sensitivity to various parameters and to assess its performance.

  • A Separation of Electroretinograms for Diabetic Retinopathy

    Yutaka MAEDA  Takayuki AKASHI  Yakichi KANATA  

     
    PAPER-Medical Electronics and Medical Information

      Vol:
    E78-D No:8
      Page(s):
    1087-1092

    The electroretinogram (ERG) is used to diagnose many kinds of eye diseases. Our final purpose in this paper is a detection of diabetic retinopathy by using only ERG. In this paper, we describe a method to examine whether presented ERG data belong to a group of diabetic retinopathy. The ERG mainly consists of the a-wave, the b-wave and the oscillatory potential (op-wave). It was known that the op-wave varies as progress of retinopathy. Thus, we use the latency, the amplitude and the peak frequency of the op-wave. First, we study these features of sample ERG data, statistically. It was clarified that some of these characteristics are significantly different between a normal group and a group of diabetic retinopathy. By using some of these characteristics, we classify unknown ERG data on the basis of the Mahalanobis' generalized distance or the linear discriminant function. The highest accuracy of this method for the unknown data is about 92.73%.

  • High-Tc Superconducting Active Slot Antenna with a YBCO Step-Edge Josephson Junction Array

    Wataru CHUJO  Hisashi SHIMAKAGE  Zhen WANG  Bokuji KOMIYAMA  

     
    PAPER

      Vol:
    E78-C No:8
      Page(s):
    1007-1011

    The high-Tc superconducting active antenna proposed here for millimeter and submillimeter radiowave communications, uses a YBCO slot antenna with a series Josephson junction array to increase the normal-state resistance of the junctions, in order to ensure impedance matching between the antenna and the junctions. The antenna is a coplanar waveguide fed slot antenna, which can be easily and monolithically combined with the Josephson junctions. The design frequency of the antenna is 10 GHz and the obtained bandwidth of a VSWR less than 2 was 4.1%. Normal-state resistance values of the junction array could be confirmed by measuring I-V characteristics and 100-MHz impedance measurements, and both agree very well. Microwave mixing experiments were carried out using the junction array with the antenna, and the experiments showed that the conversion gain of the junction was proportional to the number of the junctions. The conversion gain of an eight-junction mixer with the antenna was found to be -6 dB.

  • A Minimum Error Approach to Spotting-Based Pattern Recognition

    Takashi KOMORI  Shigeru KATAGIRI  

     
    PAPER-Speech Processing and Acoustics

      Vol:
    E78-D No:8
      Page(s):
    1032-1043

    Keyword spotting is a fundamental approach to recognizing/understanding naturally and spontaneously spoken language. To spot acoustic events such as keywords, an overall spotting system, comprising acoustic models and decision thresholds, primarily needs to be optimized to minimize all spoting errors. However, in most conventional spotting systems, the acoustic models and the thresholds are separately and heuristically designed: There has not necessarily been a theoretical basis that has allowed one to design an overall system consistently. This paper introduces a novel approach to spotting, by proposing a new design method called Minimum SPotting Error learning (MSPE). MSPE is conceptually based on a recent discriminative learning theory, i.e., the Minimum Classification Error learning/Generalized Probabilistic Descent method (MCE/GPD); it features a rigorous framework for minimizing spotting error objectives. MSPE can be used in a wide range of pattern spotting applications, such as spoken phonemes, written characters as well as spoken words. Experimental results for a Japanese consonant spotting task clearly demonstrate the promising future of the proposed approach.

  • A Signal-to-Noise Enhancer with Extended Bandwidth Using Two MSSW Filters and Two 90Hybrids

    Youhei ISHIKAWA  Toshihiro NOMOTO  Takekazu OKADA  Satoru SHINMURA  Fumio KANAYA  Shinichiro ICHIGUCHI  Toshihito UMEGAKI  

     
    PAPER

      Vol:
    E78-C No:8
      Page(s):
    1026-1032

    A signal-to-noise enhancer with a bandwidth that is six times as wide as that of the conventional type is presented. A new circuit construction, the combination of two MSSW filters which have the same insertion loss in the broadband and two 90 hybrids, is effective to remarkably extend the bandwidth. The enhancement of the enhancer amounts to 20 dB in the operating frequency range of 1.9 GHz150 MHz in 0 to 60 degrees centigrade. This enhancer has accomplished FM threshold extension because the S/N is improved by 1 to 7 dB below the C/N of 9 dB. It was demonstrated that this new enhancer is effective for noise reduction in practical DBS reception.

  • A Method of Current Testing for CMOS Digital and Mixed-Signal LSIs

    Yukiya MIURA  Sachio NAITO  

     
    PAPER

      Vol:
    E78-D No:7
      Page(s):
    845-852

    Current testing has been proposed as an alternative technique for testing fully CMOS digital LSIs. Current testing has higher fault coverage than conventional stuck-at fault (SAF) testing and is more economical because it detects a wide range of faults and requires fewer test vectors than does SAF testing. We have proposed a current testing that measures the integral of the power supply current (IDD) during one clock period including the switching current. Since this method cannot be affected by the switching current, it can be used to test an LSI operating at a relatively high clock freuqnecy. This paper presents an improved current testing method for CMOS digital and analog LSIs. The method uses two current values (i.e., an upper limit and a lower limit) and judges the circuit under test to be faulty if the measured IDD is outside these limits. The proposed current testing is evaluated here for some kinds of faults (e.g., the bridging fault and the breaking fault) in digital and mixed-signal LSIs, and its efficiency of the current testing using SPICE3.

  • Analysis of an Alternating-Service Tandem Queue with Server Vacations and Conversion Relationships between the Performance Measures

    Tsuyoshi KATAYAMA  

     
    LETTER-Communication Networks and Service

      Vol:
    E78-B No:7
      Page(s):
    1075-1079

    This paper gives several explicit formulas for the waiting times in each stage in an alternating-service, two-stage tandem queue (M/G/1 type queue) with a gate in the first stage and server vacations (or setup time). These formula are obtained by using simple conversion relationships between the performance measures. This study has been motivated by the performance evaluation of call (packet or message) processing in telecommunication switching systems.

  • Testing of k-FR Circuits under Highly Observable Condition

    Xiaoqing WEN  Hideo TAMAMOTO  Kozo KINOSHITA  

     
    PAPER

      Vol:
    E78-D No:7
      Page(s):
    830-838

    This paper presents the concept of k-FR circuits. The controllability of such a circuit is high due to its special structure. It is shown that all stuck-at faults and stuck-open faults in a k-FR circuit can be detected and located by k(k1)1 test vectors under the highly observable condition which assumes the output of every gate to be observable. k is usually two or three. This paper also presents an algorithm for converting an arbitrary combinational circuit into a k-FR circuit. A k-FR circuit is easy to test when using technologies such as the electron-beam probing, the current measurement, or the CrossCheck testability solution.

  • The Number of Elements in Minimum Test Set for Locally Exhaustive Testing of Combinational Circuits with Five Outputs

    Tokumi YOKOHIRA  Toshimi SHIMIZU  Hiroyuki MICHINISHI  Yuji SUGIYAMA  Takuji OKAMOTO  

     
    PAPER

      Vol:
    E78-D No:7
      Page(s):
    874-881

    Any minimum test set (MLTS) for locally exhaustive testing of multiple output combinational circuits (CUTs) has at least 2w test patterns, where w is the maximum number of inputs on which any output depends. In the previous researches, it is clarified that every CUT with up to four outputs has an MLTS with 2w elements. On the other hand, it can be easily shown that every CUT with more than five outputs does not have such an MLTS. It has not been however known whether every CUT with five outputs has such an MLTS or not. In this paper, it is clarified that every CUT with five outputs has such an MLTS. First, some terminologies are introduced as preliminaries. Second, features of 5(w1) dependence matrices of CUTs with five outputs and (w1) inputs are discussed. Third, an equivalence relation between dependence matrices of two CUTs is introduced. The relation means that if it holds and one of the CUTs has an MLTS with 2w elements, then the other CUT also has such an MLTS. Based on the features described above, a theorem is established that there exists a 5w dependence matrix which is equivalent to each of the above 5(w1) matrices. Finally, it is proved by the use of the theorem that every CUT with five outputs has an MLTS with 2 w elements.

  • Direct Reconstruction of Planar Surfaces by Stereo Vision

    Yasushi KANAZAWA  Kenichi KANATANI  

     
    PAPER-Image Processing, Computer Graphics and Pattern Recognition

      Vol:
    E78-D No:7
      Page(s):
    917-922

    This paper studies the problem of reconstructing a planar surface from stereo images of multiple feature points that are known to be coplanar in the scene. We present a direct method by applying maximum likelihood estimation based on a statistical model of image noise. The significant fact about our method is that not only the 3-D position of the surface is reconstructed accurately but its reliability is also computed quantitatively. The effectiveness of our method is demonstrated by doing numerical simulation.

  • A New Conformance Testing Technique for Localization of Multiple Faults in Communication Protocols

    Yoshiaki KAKUDA  Hideki YUKITOMO  Shinji KUSUMOTO  Tohru KIKUNO  

     
    PAPER

      Vol:
    E78-D No:7
      Page(s):
    802-810

    Conformance testing techniques are required for the efficient production of reliable communication protocols. A lot of conformance testing techniques have been developed. However, most of them can only decide whether an implemented protocol conforms to its specification. That is, the exact locations of faults are not determined by them. This paper presents some conditions that enable to find locations of multiple faults, and then proposes a test sequence generation technique under such conditions. The correctness proof and complexity analysis of the proposed technique are also given. The characteristics of this technique are to generate test sequences based on protocol specifications and interim test results, and to find locations of multiple faults in protocol implementations. Although the length of the test sequence generated by the proposed technique is a little longer than the one generated by the previous one, the class to which the proposed technique can be applied is larger than that to which the previous one can be applied.

  • Routing Domain Definition for Multiclass-of-Service Networks

    Shigeo SHIODA  

     
    PAPER-Communication Networks and Service

      Vol:
    E78-B No:6
      Page(s):
    883-895

    This paper proposes two algorithms for defining a routing domain in multiclass-of-service networks. One an off-line-based method, whose objective is to optimize dynamic routing performance by using precise knowledge on the traffic levels. The algorithm of the proposed method takes into account the random nature of the traffic flow, which is not considered in the network flow approach. The proposed method inherits the conceptual simplicity of the network flow approach and remains applicable to large and complex networks. In simulation experiments, the proposed off-line-based method performs better than the method based on the network flow approach, but has a similar the computation time requirement. The other method proposed here is an on-line-based method for application to B-ISDNs, where precise traffic data is not expected to be available. In this method, the routing domain is defined adaptively according to the network performance (call-blocking probability) measured in real-time. In simulation experiments, the performance of this method is comparable to that of the off-line-based method--especially when highly efficient dynamic routing is used. This paper also derives and describes methods for approximating the implied costs for multiclass-of-service networks. The approximations are very useful not only for off-line-based routing domain definition (RDD) methods but also for other kinds of network controls or optimal network dimensioning based on the concept of revenue optimization.

  • Electromagnetic Near Fields of Rectangular Waveguide Antennas in Contact with Biological Objects Obtained by the FD-TD Method

    Katsumi ABE  Shinya MIZOSHIRI  Toshifumi SUGIURA  Shizuo MIZUSHINA  

     
    LETTER

      Vol:
    E78-B No:6
      Page(s):
    866-870

    Multifrequency microwave radiometry for non-invasive measurement of temperature in biological objects has been investigated in our laboratory. An open-ended rectangular waveguide filled with a dielectric has been used as a contact-type antenna of a radiometer operating over a 1-4GHz range. In the radiometric measurement, the radiometer measures the thermal radiation emitted by the object via the antenna as the brightness temperature. The brightness temperature is related to the physical temperatures in the object through the radiometric weighting function. By virtue of the reciprocity of antenna, the weighting function can be derived from the field distribution induced in the object by the same antenna when it is operated in the active mode. In this paper, the FD-TD method is used to analyze the problem of coupling between the rectangular waveguide antenna and a biological object. The objects studied in this paper are a homogeneous and a four-layered lossy media. Working frequency is 1.2GHz, which is the center frequency of the lowest-frequency band of our radiometer. Numerical results are presented in the form of SAR patterns. It is found that the SAR patterns tend to spread out in the lateral directions in the bolus, skin and fat layers due to the diffraction which becomes stronger at lower frequencies. Results also suggest that the lateral spreading can be controlled to a certain extent by choosing the size elf antenna flange properly.

  • Automatic Determination of the Number of Mixture Components for Continuous HMMs Based a Uniform Variance Criterion

    Tetsuo KOSAKA  Shigeki SAGAYAMA  

     
    PAPER

      Vol:
    E78-D No:6
      Page(s):
    642-647

    We discuss how to determine automatically the number of mixture components in continuous mixture density HMMs (CHMMs). A notable trend has been the use of CHMMs in recent years. One of the major problems with a CHMM is how to determine its structure, that is, how many mixture components and states it has and its optimal topology. The number of mixture components has been determined heuristically so far. To solve this problem, we first investigate the influence of the number of mixture components on model parameters and the output log likelihood value. As a result, in contrast to the mixture number uniformity" which is applied in conventional approaches to determine the number of mixture components, we propose the principle of distribution size uniformity". An algorithm is introduced for automatically determining the number of mixture components. The performance of this algorithm is shown through recognition experiments involving all Japanese phonemes. Two types of experiments are carried out. One assumes that the number of mixture components for each state is the same within a phonetic model but may vary between states belonging to different phonemes. The other assumes that each state has a variable number of mixture components. These two experiments give better results than the conventional method.

  • A Speech Dialogue System with Multimodal Interface for Telephone Directory Assistance

    Osamu YOSHIOKA  Yasuhiro MINAMI  Kiyohiro SHIKANO  

     
    PAPER

      Vol:
    E78-D No:6
      Page(s):
    616-621

    This paper describes a multimodal dialogue system employing speech input. This system uses three input methods (through a speech recognizer, a mouse, and a keyboard) and two output methods (through a display and using sound). For the speech recognizer, an algorithm is employed for large-vocabulary speaker-independent continuous speech recognition based on the HMM-LR technique. This system is implemented for telephone directory assistance to evaluate the speech recognition algorithm and to investigate the variations in speech structure that users utter to computers. Speech input is used in a multimodal environment. The collecting of dialogue data between computers and users is also carried out. Twenty telephone-number retrieval tasks are used to evaluate this system. In the experiments, all the users are equally trained in using the dialogue system with an interactive guidance system implemented on a workstation. Simplified city maps that indicate subscriber names and addresses are used to reduce the implicit restrictions imposed by written sentences, thus allowing each user to develop his own forms of expression. The task completion rate is 99.0% and approximately 75% of the users say that they prefer this system to using a telephone book. Moreover, there is a significant decrease in nonkeyword usage, i.e., the usage of words other than names and addresses, for users who receive more utterance practice.

  • A Partially Ferrites Loaded Waveguide Applicator for Local Heating of Tissues

    Yoshio NIKAWA  Yasunori TOYOFUKU  Fumiaki OKADA  

     
    PAPER

      Vol:
    E78-B No:6
      Page(s):
    836-844

    A partially ferrites and dielectric loaded water filled waveguide applicator is presented which can be used for microwave heating of tissues. The applicator can change its heating pattern by changing the external DC magnetic field applied to the ferrites. The electromagnetic (EM) field distribution inside the applicator is obtained theoretically and the simulated EM field inside the applicator is checked experimentally using 430MHz. Furthermore, on the basis of the EM field distribution inside the applicator, simulations of SAR distribution inside lossy homogeneous human tissue as muscle are performed using finite difference time domain (FD-TD) method. Simulated data of Specific Absorption Rate (SAR) distribution is compared with the experimental ones. Simulations of temperature distribution are also performed using heat transfer equation. Simulated data of temperature elevation distribution is compared with the experimental ones. The simulated results agree well with the experimental ones and it is confirmed that the heating pattern can be changed by external DC magnetic field applied to the applicator. The results obtained here show that the partially ferrites and dielectric loaded water filled waveguide applicator which operates at 430 MHz can change its heating pattern without changing its setup and can heat local target on the human body for hyperthermia treatment.

  • Computation of the Field Distribution Generated by a Rectangular Aperture in a Four-Layered Lossy Dielectric Medium by Modal Analysis

    Shinya MIZOSHIRI  Katsumi ABE  Toshifumi SUGIURA  Shizuo MIZUSHINA  

     
    PAPER

      Vol:
    E78-B No:6
      Page(s):
    851-858

    An open-ended rectangular waveguide filled with a dielectric has been used as a contact-type antenna of microwave radiometer for non-invasive measurement of temperature in a biological object. In this application, the thermal radiation emitted by the object is measured as the brightness temperature by the instrument via the antenna. The brightness temperature is related to the physical temperatures in the object through the radiometric weighting function. By virtue of the reciprocity of antenna, the weighting function can be derived from the field distribution induced in the object by the antenna when it is operated in the active mode. In this work, we treat a problem of the rectangular waveguide antenna radiating into a four-layered medium by modal analysis. The results are first compared with those obtained by the FD-TD method to indicate that the results of the two methods are in a good agreement. The operation of an antenna used in a radiometer system in our laboratory is analyzed by this method and the weighting functions at different frequencies are computed, and the results are presented along with discussions on the results.

3301-3320hit(3578hit)