The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] tin(3578hit)

3341-3360hit(3578hit)

  • A Global Router for Analog Function Blocks Based on the Branch-and-Bound Algorithm

    Tadanao TSUBOTA  Masahiro KAWAKITA  Takahiro WATANABE  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E78-A No:3
      Page(s):
    345-352

    The main aim of device-level global routing is to obtain high-performance detailed routing under various layout constraints. This paper deals with global routing for analog function blocks. For analog LSIs, especially for those operating at high frequency, various layout constraints are specified prior to routing. Those constrainsts must be completely satisfied to achieve the required circuit performance. However, they are sometimes too hard to be solved by any heuristic method even if a problem is small in size. Thus, we propose a method based on the branch-and-bound algorithm, which can generate all possible solutions to find the best one. Unfortunately, the method tends to take a large amount of processing time. In order to defeat the drawbacks by accelerating the process, constraints are classified into two groups: constraints on single nets and constraints between two nets. Therefore our method consists of two parts: in the first part only constraints on single nets are processed and in the second part only constraints between two nets are processed. The method is efficient because many possible routes that violate layout constraints are rejected immediately in each part. This makes it possible to construct a smaller search tree and to reduce processing time. Additionally this idea, all nets processed in the second phase are sorted in the proper order to reduce the number of edges in the search tree. This saves much processing time, too. Experimental results show that our method can find a good global route for hard layout constraints in practical processing time, and also show that it is superior to the well-known simulated annealing method both in quality of solutions and in processing time.

  • Reflection and Transmission Phase Characteristics of Inductive Discontinuities of Finite Thickness in Rectangular Waveguides

    Toshihiko SHIBAZAKI  Teruhiro KINOSHITA  Ryoji SHIN'YAGAITO  

     
    LETTER-Electromagnetic Theory

      Vol:
    E78-C No:2
      Page(s):
    204-207

    The precise phase characteristics of the reflected and transmitted waves are obtained for electromagnetic scattering by inductive discontinuities of finite thickness located in rectangular waveguides. The incident wave is assumed to be the dominant mode, and the modified residue-calculus method is used for numerical analysis. The phase characteristics when the thickness and width of the iris are varied, and characteristics of the reflected and transmitted waves when resonance appears, are discussed. In addition, an X-band experiment is performed and the calculations for both the reflected and transmitted waves are shown to agree well with the experimental values.

  • A Multielement Flexible Microstrip Patch Applicator for Microwave Hyperthermia

    Yoshio NIKAWA  Masahiro YAMAMOTO  

     
    PAPER

      Vol:
    E78-B No:2
      Page(s):
    145-151

    A light, thin and flexible applicator using a microstrip patch array for microwave heating is presented and tested in this work. The applicator is made of a flat silicone rubber bag, inside of which flows cooling water. EM coupling feeding is applied, which has no direct contact between the feed and the patch, to improve durability and reliability when it is repeatedly applied to the uneven surface of the heated portion of the human body. Simulations of SAR distribution are performed using the finite difference time domain (FD-TD) method. Simulated data are compared with the experimental ones using cubic and cylindrical phantom models with single and multielement patch applicators. Simulations of temperature distribution are also performed using the heat transfer equation. Simulated data are compared with the experimental ones using cubic and cylindrical phantom models. The simulated results agree well with the experimental ones. The results obtained here show that the multielement flexible microstrip patch applicator which operates at 430MHz can heat a relatively shallow and widespread area on the human body for hyperthermia treatments.

  • Dry-Released Nickel Micromotors with Low-Friction Bearing Structure

    Toshiki HIRANO  Tomotake FURUHATA  Hiroyuki FUJITA  

     
    PAPER

      Vol:
    E78-C No:2
      Page(s):
    132-138

    A new electrostatic wobble motor design and fabrication method were proposed, and micromotors were successfully fabricated and operated. The advantages are (1) thicker structural size, resulting in larger torque, (2) simple and safe fabrication process and (3) needle-shaped bearing to support the rotor. Needle-shaped bearing used here is expected to have lower friction comparing with the existing motor, since the load is smaller for this kind of bearing structure. Two major sources of the load, electrostatic force and capillary force, were considered to prove this tendency. Diamond-like Carbon (DLC) film was employed as a solid lubricant for its bearing. The friction of DLC and that of ilicon-dioxide were compared by experiment.

  • Defect-Tolerant WSI File Memory System Using Address Permutation for Spare Allocation

    Eiji FUJIWARA  Masaharu TANAKA  

     
    PAPER-Fault Tolerant Computing

      Vol:
    E78-D No:2
      Page(s):
    130-137

    This paper proposes a large capacity high-speed file memory system implemented with wafer scale RAM which adopts a novel defect-tolerant technique. Based on set-associative mapping, the defective memory blocks on the wafer are repaired by switching with the spare memory blocks. In order to repair the clustered defective blocks, these are permuted logically with other blocks by adding some constant value to the input block addresses. The defective blocks remaining even after applying the above two methods are repaired by using error control codes which correct soft errors induced by alpha particles in an on-line operation as well as hard errors induced by the remaining defective blocks. By using the proposed technique, this paper demonstrates a large capacity high-speed WSI file memory system implemented with high fabrication yield and low redundancy rate.

  • Vertical Cavity Surface-Emitting Laser Array for 1.3 µm Range Parallel Optical Fiber Transmissions

    Toshihiko BABA  Yukiaki YOGO  Katsumasa SUZUKI  Tomonobu KONDO  Fumio KOYAMA  Kenichi IGA  

     
    LETTER-Opto-Electronics

      Vol:
    E78-C No:2
      Page(s):
    201-203

    Long-wavelength 1.3 µm GaInAsP/InP vertical cavity surface-emitting lasers (VCSELs) have been demonstrated in an array configuration. With the strong current confinement by a buried heterostructure and the efficient optical feedback by a dielectric cavity, five VCSEL elements in a 24 array operated at room temperature with 5 mW total power output and wavelength error within 5%. The stacked planar optics including the VCSEL array is a promising optical transmitter in ultra large scale parallel optical communication systems.

  • Mechanizing Explicit Inductive Equational Reasoning by DTRC

    Su FENG  Toshiki SAKABE  Yasuyoshi INAGAKI  

     
    PAPER-Algorithm and Computational Complexity

      Vol:
    E78-D No:2
      Page(s):
    113-121

    Dynamic Term Rewriting Calculus (DTRC) is a new computation model aiming at formal description and verification of algorithms treating Term Rewriting Systems (TRSs). In this paper, we show that we can use DTRC to mechanize explicit induction for proving an inductive theorem, that is, we can translate the statements of base and induction steps for proving by induction into a DTRC term. The translation reduces the proof of the statements into the evaluation of the corresponding DTRC term.

  • Hardware Implementation of New Analog Memory for Neural Networks

    Koji NAKAJIMA  Shigeo SATO  Tomoyasu KITAURA  Junichi MUROTA  Yasuji SAWADA  

     
    PAPER-Integrated Electronics

      Vol:
    E78-C No:1
      Page(s):
    101-105

    We have fabricated a new analog memory with a floating gate as a key component to store synaptic weights for integrated artificial neural networks. The new analog memory comprises a tunnel junction (poly-Si/poly-si oxide/poly-Si sandwich structure), a thin-film transistor, two capacitors, and a floating gate MOSFET. The diffusion of the charges injected through the tunnel junction is controlled by switching operation of the thin-film transistor, and we refer to the new analog memory as switched diffusion analog memory (SDAM). The obtained characteristics of SDAM are a fast switching speed and an improved linearity between the potential of the floating gate and the number of pulse inputs. SDAM can be used in a neural network in which write/erase and read operations are performed simultaneously.

  • Long-Distance Soliton Transmission up to 20 Gbit/s Using Alternating-Amplitude Solitons and Optical TDM

    Masatoshi SUZUKI  Noboru EDAGAWA  Hidenori TAGA  Hideaki TANAKA  Shu YAMAMOTO  Yukitoshi TAKAHASHI  Shigeyuki AKIBA  

     
    INVITED PAPER

      Vol:
    E78-C No:1
      Page(s):
    12-21

    Feasibility of 20 Gbit/s single channel transoceanic soliton transmission systems with a simple EDFA repeaters configuration has been studied. Both a simple and versatile soliton pulse generator and a polarization insensitive optical demultiplexer, which can provide a almost square shape optical gate with duration of full bit time period, have been proposed and demonstrated by using sinusoidally modulated electroabsorption modulators. The optical time-division multiplexing/demultiplexing scheme using the optical demultiplexer results in drastic improvement of bit error rate characteristics. We have experimentally confirmed that the use of alternating-amplitude solitons is an efficient way to mitigate not only soliton-soliton interaction but also Gordon-Haus timing jitter constraints in multi-ten Gbit/s soliton transmission. Timing jitter reduction using relatively wide band optical filter bas been investigated in 20 Gbit/s loop experiments and single-carrier, single-polarization 20 Gbit/s soliton data transmission over 11500 km with bit error rate of below 10-9 has been experimentally demonstrated, using the modulator-based soliton source, the optical demultiplexer, the alternation-amplitude solitons, and wide-band optical filters. Obtained 230 Tbit/skm transmission capacity shows the feasibility of 20 Gbit/s single channel soliton transoceanic systems using fully practical technologies.

  • A Multiple Wavelength Vertical-Cavity Surface-Emitting Laser (VCSEL) Array for Optical Interconnection

    Ichiro OGURA  Kaori KURIHARA  Shigeru KAWAI  Mikihiro KAJITA  Kenichi KASAHARA  

     
    INVITED PAPER

      Vol:
    E78-C No:1
      Page(s):
    22-27

    We describe an application of InGaAs/AlGaAs VCSELs to multiple wavelength light source for optical interconnection. A flip-chip bonding technique is used to integrate the VCSELs lasing at different wavelengths. The integrated VCSELs of different wavelengths are individually grown and processed, so that one can optimize the device characteristics and the wavelength separation or distribution for multiple wavelength interconnection systems. A 9-wavelength VCSEL array with a wavelength separation of 5 nm has been successfully fabricated.

  • Network Management System Using Distributed Computing

    Tamiya OCHIAI  

     
    PAPER

      Vol:
    E78-B No:1
      Page(s):
    54-60

    This paper proposes a suitable distributed computing model as the basis for building a network management system. Author has been studying a distributed reactive model, called Meta for this purpose at Cornell University. Effectiveness using Meta is to provide high level program interface for developing network management system, and programmers can achieve network management system with coding small amount of programs. It also realizes easy additions and modifications for network management application programs. To confirm the effectiveness of the proposal, the author has utilized Meta to implement an experimental network management system. The experimental system provides high level interfaces for monitoring and controlling network components. It also supports reliable communication over distributed nodes. Preliminary evaluation of the system shows that critical network management applications are provided within an appropriate response time for all applications provided by SNMP, with small development cost and easy system modification.

  • Alternative Necessary and Sufficient Conditions for Collision Intractable Hashing

    Toshiya ITOH  Kei HAYASHI  

     
    PAPER

      Vol:
    E78-A No:1
      Page(s):
    19-26

    Damgrd defined the notion of a collision intractable hash functions and showed that there exists a collection of collision intractable hash functions if there exists a collection of claw-free permutation pairs. For a long time, the necessary and sufficient condition for the existence of a collection of collision intractable hash functions has not been known, however, very recently Russell finally showed that there exists a collection of collision intractable hash functions iff there exists a collection of claw-free pseudo-permutation pairs. In this paper, we show an alternative necessary and sufficient condition for the existence of a collection of collision intractable hash functions, i.e., there exists a collection of collision intractable hash functions iff there exists a collection of distinction intractable pseudo-permutations.

  • A Code Construction for M-Choose-T Communication over the Multiple-Access Adder Channel

    Kin-ichiroh TOKIWA  Hiroshi MATSUDA  Hatsukazu TANAKA  

     
    PAPER-Information Theory and Coding Theory

      Vol:
    E78-A No:1
      Page(s):
    94-99

    Coding scheme is discussed for M-Choose-T communication in which at most T active users out of M potential users simultaneously transmit their messages over a common channel. The multiple-access channel considered in this paper is assumed to be a time-discrete noiseless adder channel without feedback with T binary inputs and one real-valued output, and is used on the assumption of perfect block and bit synchronization among users. In this paper a new class of uniquely decodable codes is proposed in order to realize error-free M-Choose-T communication over the adder channel described above. These codes are uniquely decodable in the sense that not only the set of active users can be specified but also their transmitted messages can be recovered uniquely as long as T or fewer users are active simultaneously. It is shown that these codes have a simple decoding algorithm and can achieve a very high sum rate arbitrarily close to unity if exactly T users are active.

  • A Study on Power Assignment of Hierarchical Modulation Schemes for Digital Broadcasting

    Masakazu MORIMOTO  Hiroshi HARADA  Minoru OKADA  Shozo KOMAKI  

     
    PAPER

      Vol:
    E77-B No:12
      Page(s):
    1495-1500

    In the future satellite broadcasting system in 21GHz band, the rainfall attenuation is a most significant problem. To solve this problem, the hierarchical transmission systems have been studied. This paper analyzes the performance of the hierarchical modulation scheme from the view point of power assignment in the presence of the rainfall attenuation. This paper shows an optimum power assignment ratio to maximize the spectral efficiency and the signal-to-noise ratio of received image, and these optimum ratio is varied with the measure of system performance.

  • A Global Router Optimizing Timing and Area for High-Speed Bipolar LSIs

    Ikuo HARADA  Yuichiro TAKEI  Hitoshi KITAZAWA  

     
    PAPER

      Vol:
    E77-A No:12
      Page(s):
    2058-2066

    A timing-driven global routing algorithm is proposed that directly models the path-based timing constraints. By keeping track of the critical path delay and channel densities, and using novel heuristic criteria, it can select routing paths that minimize area as well as satisfy the timing constraints. Using bipolar-specific features, this router can be used to design LSI chips that handle signals with speeds greater that a gigabit per second. Experimental results shows an average delay improvement of 17.6%.

  • A Modified Genetic Channel Router

    Akio SAKAMOTO  Xingzhao LIU  Takashi SHIMAMOTO  

     
    PAPER

      Vol:
    E77-A No:12
      Page(s):
    2076-2084

    Genetic algorithms have been shown to be very useful in a variety of search and optimization problems. In this paper, we propose a modified genetic channel router. We adopt the compatible crossover operator and newly designed compatible mutation operator in order to search solution space more effectively, where vertical constraints are integrated. By carefully selected fitness function forms and optimized genetic parameters, the current version speeds up benchmarks on average about 5.83 times faster than that of our previous version. Moreover the total convergence to optimal solutions for benchmarks can be always obtained.

  • A Fast Vectorized Maze Routing Algorithm on a Supercomputer

    Yoshio MIKI  

     
    PAPER

      Vol:
    E77-A No:12
      Page(s):
    2067-2075

    This paper presents a fast and practical routing algorithm implemented on a supercomputer. In previously reported work, routing has been accelerated by executing the maze algorithm on parallel processing elements. However, although many parallel algorithms and special architectures have been introduced, practical aspects have not been addressed. We therefore present a novel approach that uses a vector processor as a routing accelerator and a wavefront control algorithm in order to avoid the wasteful searches that often occur in industrial routing problems. Experimental results that show the performance of a supercomputer using these algorithms is equivalent to over 1800 VAXMIPS, the fastest yet reported for routing accelerators. Results with industrial data also prove the validity of our approach.

  • Electromagnetic Plane Wave Scattering by a Loaded Trough on a Ground Plane

    Ryoichi SATO  Hiroshi SHIRAI  

     
    PAPER-Electromagnetic Theory

      Vol:
    E77-C No:12
      Page(s):
    1983-1989

    Electromagnetic plane wave scattering by a loaded trough on a ground plane has been analyzed by Kobayashi and Nomura's method. The field in each region is expressed first in terms of appropriate eigen functions, whose excitation coefficients are determined by the continuity condition across the aperture of the trough. Simple far field expression which is suitable for numerical calculation for small aperture cases has been derived. Scattering far field patterns and radar cross section are calculated and compared with those obtained by other methods. Good agreements have been observed for all incident angles.

  • Maple: A Simultaneous Technology Mapping, Placement, and Global Routing Algorithm for Field-Programmable Gate Arrays

    Nozomu TOGAWA  Masao SATO  Tatsuo OHTSUKI  

     
    PAPER

      Vol:
    E77-A No:12
      Page(s):
    2028-2038

    Technology mapping algorithms for LUT (Look Up Table) based FPGAs have been proposed to transfer a Boolean network into logic-blocks. However, since those algorithms take no layout information into account, they do not always lead to excellent results. In this paper, a simultaneous technology mapping, placement and global routing algorithm for FPGAs, Maple, is presented. Maple is an extended version of a simultaneous placement and global routing algorithm for FPGAs, which is based on recursive partition of layout regions and block sets. Maple inherits its basic process and executes the technology mapping simultaneously in each recursive process. Therefore, the mapping can be done with the placement and global routing information. Experimental results for some benchmark circuits demonstrate its efficiency and effectiveness.

  • Transmission Characteristics of DQPSK-OFDM for Terrestrial Digital Broadcasting Systems

    Masafumi SAITO  Shigeki MORIYAMA  Shunji NAKAHARA  Kenichi TSUCHIDA  

     
    PAPER

      Vol:
    E77-B No:12
      Page(s):
    1451-1460

    OFDM (Orthogonal Frequency Division Multiplexing) is a useful digital modulation method for terrestrial digital broadcasting systems, both for digital TV broadcasting and digital audio broadcasting. OFDM is a kind of multicarrier modulation and shows excellent performance especially in multipath environments and in mobile reception. Other advantages are its resistance to interference signals and its suitability for digital signal processing. When each carrier of the OFDM signal is modulated with DQPSK, we call it DQPSK-OFDM. DQPSK-OFDM is a basic OFDM system, which is especially suitable for mobile reception. This paper describes how a DQPSK-OFDM system works and shows several experimental and simulation results. The experimental results mainly concern the performance of the DQPSK-OFDM system relative to various disturbances such as multipath (ghost) signals, nonlinearity of the channel, and interference from analog signals. The transmission characteristics of DQPSK-OFDM are investigated and the basic criteria for the system design of DQPSK-OFDM are discussed.

3341-3360hit(3578hit)