The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] tin(3578hit)

3501-3520hit(3578hit)

  • System Design, Data Collection and Evaluation of a Speech Dialogue System

    Katunobu ITOU  Satoru HAYAMIZU  Kazuyo TANAKA  Hozumi TANAKA  

     
    PAPER

      Vol:
    E76-D No:1
      Page(s):
    121-127

    This paper describes design issues of a speech dialogue system, the evaluation of the system, and the data collection of spontaneous speech in a transportation guidance domain. As it is difficult to collect spontaneous speech and to use a real system for the collection and evaluation, the phenomena related with dialogues have not been quantitatively clarified yet. The authors constructed a speech dialogue system which operates in almost real time, with acceptable recognition accuracy and flexible dialogue control. The system was used for spontaneous speech collection in a transportation guidance domain. The system performance evaluated in the domain is the understanding rate of 84.2% for the utterances within the predefined grammar and the lexicon. Also some statistics of the spontaneous speech collected are given.

  • A Linguistic Procedure for an Extension Number Guidance System

    Naomi INOUE  Izuru NOGAITO  Masahiko TAKAHASHI  

     
    PAPER

      Vol:
    E76-D No:1
      Page(s):
    106-111

    This paper describes the linguistic procedure of our speech dialogue system. The procedure is composed of two processes, syntactic analysis using a finite state network, and discourse analysis using a plan recognition model. The finite state network is compiled from regular grammar. The regular grammar is described in order to accept sentences with various styles, for example ellipsis and inversion. The regular grammar is automatically generated from the skeleton of the grammar. The discourse analysis module understands the utterance, generates the next question for users and also predicts words which will be in the next utterance. For an extension number guidance task, we obtained correct recognition results for 93% of input sentences without word prediction and for 98% if prediction results include proper words.

  • An Access Control Mechanism for Object-Oriented Database Systems

    Tadashi ARAKI  Tetsuya CHIKARAISHI  Thomas HARDJONO  Tadashi OHTA  Nobuyoshi TERASHIMA  

     
    PAPER

      Vol:
    E76-A No:1
      Page(s):
    112-121

    The security problems of object-oriented database system are investigated and security level assignment constraints and an access control mechanism based on the multilevel access control security policy are proposed. The proposed mechanism uses the Trusted Computing Base. A unique feature of the mechanism is that security levels are assigned not only to data items (objects), but also to methods and methods are not shown to the users whose security level is lower than that of the methods. And we distinguish between the security level of a variable in a class and that in an instance and distinguish between the level of an object when it is taken by itself and it is taken as a variable or an element of another complex object. All of this realizes the policy of multilevel access control.

  • Measurement of High-Speed Devices and Integrated Circuits Using Electro-Optic Sampling Technique

    Tadao NAGATSUMA  

     
    INVITED PAPER-Opto-Electronics Technology for LSIs

      Vol:
    E76-C No:1
      Page(s):
    55-63

    Recent progress in high-speed semiconductor devices and integrated circuits (ICs) has outpaced the conventional measuring and testing instruments. With advent of ultrashort-pulse laser technology, the electro-optic sampling (EOS) technique based on the Pockels effect has become the most promising solution way of overcoming the frequency limit, whose bandwidth is approaching a terahertz. This paper reviews recent progress on the research of the EOS technniques for measuring ultrahigh-speed electronic devices and ICs. It describes both the principle of the EOS and the key technologies used for noncontact probing of ICs. Internal-node measurements of state-of-the-art high-speed ICs are also presented.

  • The Effect of Varying Routing Probability in Two Parallel Queues with Dynamic Routing under a Threshold-Type Scheduling

    Ivo J. B. F. ADAN  Jaap WESSELS  W. Henk M. ZIJM  

     
    LETTER-Communication Networks and Service

      Vol:
    E76-B No:1
      Page(s):
    29-31

    In the paper entitled "The effect of varying routing probability in two parallel queues with dynamic routing under a threshold-type scheduling", Kojima et al. derive an expression in the form of a product of powers for the state probabilities of a threshold-type shortest queue problem. In this note it is demonstrated that this expression is essentially more complicated and has the form of an infinite sum of products of powers. In fact, Kojima et al. find the first term in this infinite sum only.

  • Polarization Characteristics of Plane Waves Scattered by a Strip Grating with an Anisotropic Substrate

    Masamitsu ASAI  Jiro YAMAKITA  Shinnosuke SAWA  

     
    LETTER

      Vol:
    E75-A No:12
      Page(s):
    1765-1767

    In this paper, scattering waves by a strip grating with an anisotropic substrate for the incidence of inclined polarization are analyzed, and polarization characteristics of scatterd waves are calculated. For simplicity, the analysis is limitted to the case of normal incidence and a perfectly conducting strip grating is assumed.

  • Performance Analysis for a Two-Class Priority Queueing Model with General Decrementing Service

    Tsuyoshi KATAYAMA  

     
    PAPER

      Vol:
    E75-B No:12
      Page(s):
    1301-1307

    This paper investigates a two-class priority queue with decrementing service of a parameter (k1=, k2=k,1k) which operates as follows: Starting once a class-1 message service, a single server serves all messages in queue 1 until it becomes empty. After service completion in queue 1, the server switches over to queue 2 and continues serving messages in queue 2 until either queue 2 becomes empty, or the number of messages decreases to k less than that found upon the server's arrival at queue 2, whichever occurs first. It is assumed that arrival streams are Poissonian, message service times are generally distributed, and switch-over times are zero. We derive queue-length generating functions and LSTs of message waiting time distributions.

  • Approximate Distribution of Processor Utilization and Design of an Overload Detection Scheme for SPC Switching Systems

    Toshihisa OZAWA  

     
    PAPER

      Vol:
    E75-B No:12
      Page(s):
    1287-1291

    Processors are important resources of stored program control (SPC) switching systems, and estimation of their workload level is crucial to maintaining service quality. Processor utilization is measured as processor usage per unit time, and workload level is usually estimated from measurement of this utilization during a given interval. This paper provides an approximate distribution of processor utilization of SPC switching systems, and it provides a method for designing an overload detection scheme. This method minimizes the observation interval required to keep overload detection errors below specified values. This observation interval is obtained as an optimal solution of a linear programming.

  • Fault Tolerance of an Information Disseminating Scheme on a Processor Network

    Kumiko KANAI  Yoshihide IGARASHI  Kinya MIURA  

     
    PAPER-Algorithms, Data Structures and Computational Complexity

      Vol:
    E75-A No:11
      Page(s):
    1555-1560

    We discuss fault tolerance of an information disseminating scheme, t-disseminate on a network with N processors, where each processor can send a message to t directions at each round. When N is a power of t+1 and at most tlogt+1N-1 (at most t) processors and/or edges have hailed, logt+1N+(f1)/t rounds (logt+1N+2 rounds) suffice for broadcasting information to all destinations from any source by t-disseminate. For a arbitrary N, logt+1N2f/t1 rounds (logt+1N+2 rounds) suffice for broadcasting information to all destinations from any source by t-disseminate if at most t(logt+1N1)/2 (at most t/2) processors and/or edges have failed.

  • A General Analysis of the Zero-Voltage Switched Quasi-Resonant Buck-Boost Type DC-DC Converter in the Continuous and Discontinuous Modes of the Reactor Current

    Hirofumi MATSUO  Hideki HAYASHI  Fujio KUROKAWA  Mutsuyoshi ASANO  

     
    PAPER

      Vol:
    E75-B No:11
      Page(s):
    1159-1170

    The characteristics of voltage-resonant dc-dc converters have already been analyzed and described. However, in the conventional analysis, the inductance of the reactor is assumed to be infinity and the loss resistance of the power circuit is not taken into account. Also, in some cases, the averaging method is applied to analyze the resonant dc-dc converters as well as the pwm dc-dc converters. Consequently, the results from conventional analysis are not entirely in agreement with the experimental ones. This paper presents a general design-oriented analysis of the buck-boost type voltage-resonant dc-dc converter in the continuous and discontinuous modes of the reactor current. In this analysis, the loss resistance in each part of the power circuit, the inductance of the reactor, the effective value (not mean value) of the power loss, and the energy-balance among the input, output and internal-loss powers are taken into account. As a result, the behavior and characteristics of the buck-boost type voltage-resonant dc-dc converter are fully explained. It is also revealed that there is a useful mode in the discontinuous reactor current region, in which the output voltage can be regulated sufficiently for the load change from no load to full load and for the relatively large change of the input voltage, and then the change in the switching frequency can be kept relatively small.

  • Discrete Time Modeling and Digital Signal Processing for a Parameter Estimation of Room Acoustic Systems with Noisy Stochastic Input

    Mitsuo OHTA  Noboru NAKASAKO  Kazutatsu HATAKEYAMA  

     
    PAPER

      Vol:
    E75-A No:11
      Page(s):
    1460-1467

    This paper describes a new trial of dynamical parameter estimation for the actual room acoustic system, in a practical case when the input excitation is polluted by a background noise in contrast with the usual case when the output observation is polluted. The room acoustic system is first formulated as a discrete time model, by taking into consideration the original standpoint defining the system parameter and the existence of the background noise polluting the input excitation. Then, the recurrence estimation algorithm on a reverberation time of room is dynamically derived from Bayesian viewpoint (based on the statistical information of background noise and instantaneously observed data), which is applicable to the actual situation with the non-Gaussian type sound fluctuation, the non-linear observation, and the input background noise. Finally, the theoretical result is experimentally confirmed by applying it to the actual estimation problem of a reverberation time.

  • Designing Multi-Level Quorum Schemes for Highly Replicated Data

    Bernd FREISLEBEN  Hans-Henning KOCH  Oliver THEEL  

     
    PAPER

      Vol:
    E75-D No:6
      Page(s):
    763-770

    In this paper we present and analyze multi-level quorum schemes for maintaining the consistency of replicated data in the presence of concurrency and failures in a large distributed environment. The multi-level quorum method operates on a logical hierarchy of the nodes in the network and applies well known flat voting algorithms for replicated data concurrency control in a layered fashion. We show how the number of hierarchy levels, the number of logical entities per level and the voting algorithms used on each level affect the costs and the degree of availability associated with a wide range of multi-level quorum schemes. The results of the analysis are used to provide guidelines for designing the most suitable multi-level quorum strategy for a given application scenario. Comparative performance measurements in a simulated network are presented to illustrate the properties of multi-level approaches when some of the assumptions of the analytical investigation do not hold.

  • Analysis of Engine States and Automobile Features Based on Time-Dependent Spectral Characteristics

    Yumi TAKIZAWA  Shinichi SATO  Keisuke ODA  Atsushi FUKASAWA  

     
    PAPER

      Vol:
    E75-A No:11
      Page(s):
    1524-1532

    This paper describes a nonstationary spectral analysis method and its application to prognosis and diagnosis of automobiles. An instantaneous frequency spectrum is considered first at a single point of time based on the instantaneous representation of autocorrelation. The spectral distortion is then considered on two-dimensional spectrum, and the filtering is introduced into the instantaneous autocorrelations. By the above procedure, the Instantaneous Covariance method (ICOV), the Instantaneous Maximum Entropy Method (IMEM), and the Wigner method are shown and they are unified. The IMEM is used for the time-dependent spectral estimation of vibration and acoustic sound signals of automobiles. A multi-dimensional (M-D) space is composed based on the variables which are obtained by the IMEM. The M-D space is transformed into a simple two-dimensional (2-D) plane by a projection matrix chosen by the experiments. The proposed method is confirmed useful to analyze nonstationary signals, and it is expected to implement automatic supervising, prognosis and diagnosis for a traffic system.

  • Verification of Register Transfer Level (RTL) Designs

    Alberto Palacios PAWLOVSKY  Sachio NAITO  

     
    PAPER

      Vol:
    E75-D No:6
      Page(s):
    785-791

    This paper describes a new method for verifying designs at the RTL with respect to their specifications at the functional level. The base of the verification method shown here is the translation of the specification and design representations to graph models, where the descriptions common to both representations have a symbolic representation. These symbol labeled graphs are then simplified and, by solving the all node-pair path expression problem for them, a pair of regular expressions is obtained for every two nodes in the graphs. The first regular expression in each pair represents the flow of control and the second one the flow of data between the corresponding nodes. The process of verification is carried out by checking whether or not every pair of regular expressions of the specification has a corresponding pair in the design.

  • Modeling and Simulation of the Sliding Window Algorithm for Fault-Tolerant Clock Synchronization

    Manfred J. PFLUEGL  Douglas M. BLOUGH  

     
    PAPER

      Vol:
    E75-D No:6
      Page(s):
    792-796

    Synchronous clocks are an essential requirement for a variety of distributed system applications. Many of these applications are safety-critical and require fault tolerance. In this paper, a general probabilistic clock synchronization model is presented. This model is uniformly probabilistic, incorporating random message delays, random clock drifts, and random fault occurrences. The model allows faults in any system component and of any type. Also, a new Sliding Window Clock Synchronization Algorithm (SWA) providing increased fault tolerance is proposed. The probabilistic model is used for an evaluation of SWA which shows that SWA is capable of tolerating significantly more faults than other algorithms and that the synchronization tightness is as good or better than that of other algorithms.

  • A Method and the Effect of Shuffling Compactor Inputs in VLSI Self-Testing

    Kiyoshi FURUYA  Edward J. McCLUSKEY  

     
    PAPER

      Vol:
    E75-D No:6
      Page(s):
    842-846

    Signature analysis using a Multiple-Input LFSR as the output response compaction circuit is widely adopted in actual BIST schemes. While aliasing probabilities for random errors are usually very small, MI-LFSRs are tend to fail detecting diagonal errors. A spot error, which include the diagonal error as a particular case, is defined as multiple bit crrors adjacent in space and in time domain. Then, shuffling of interconnection between CUT output and MI-LFSR input is studied as a scheme to prevent aliasing for such errors. The condition for preventing aliasing due to a predetermined size of single spot error is shown. Block based shuffling and the shortened one are proposed to realize required distance properties. Effect of shuffling for multiple spot errors is examined by simulation showing that shuffling is effective also for a certain extend of multiple spot errors.

  • Fault Tolerance Assurance Methodology of the SXO Operating System for Continuous Operation

    Hiroshi YOSHIDA  Hiroyuki SUZUKI  Kotaro OKAZAKI  

     
    PAPER

      Vol:
    E75-D No:6
      Page(s):
    797-803

    In developing the SXO operating system for the SURE SYSTEM 2000 continuous operation system, we aimed to create an unprecedentedly high software and hardware fault tolerance. We devised a fault tolerant architecture and various methodologies to ensure fault tolerance. We implemented these techniques systematically throughout operating system development. In the design stage, we developed a design methodology called the recovery process chart to verify that recovery mechanisms were complete. In the manufacturing stage, we applied the concept of critical routes to recovery and other processes essential to high dependability. We also developed a method of finding critical routes in a recovery process chart. In the test stage, we added an artificial software fault injection mechanism to the operating system. It generates various reproducible errors at appropriate times and reduces the number of personnel needed for test, making system reliability evaluation easy.

  • Semidistance Codes and t-Symmetric Error Correting/All Unidirectional Error Detectiong Codes

    Kenji NAEMURA  

     
    PAPER-Fault Tolerant Computing

      Vol:
    E75-D No:6
      Page(s):
    873-883

    The paper considers the design of two families of binary block codes developed for controlling large numbers of errors which may occur in LSI, optical disks and other devices. The semidistance codes are capable of assuring a required signal-to-noise ratio in information retrieval; the t-symmetric error correcting/all unidirectional error detecting" (t-SyEC/AUED) codes are capable of correcting t or fewer symmetric errors and also detecting any number of unidirectional errors caused by the asymmetric nature of transmission or storage madia. The paper establishes an equivalence between these families of codes, and proposes improved methods for constructing, for any values of t, a class of nonsystematic constant weight codes as well as a class of systematic codes. The constructed codes of both classes are shown to be optimal when t is O, and of asymptotically optimal order" in general cases. The number of redundant bits of the obtained nonsystematic code is of the order of (t+1/2)log2 K bits, where K is the amount of information encoded. The obtained systematic codes have redundancy of the order of (t+1)log2 K bits.

  • A Newton Algorithm for Computing the Capacity of Discrete Memoryless Channels

    Kiyotaka YAMAMURA  

     
    PAPER-Numerical Analysis and Self-Validation

      Vol:
    E75-A No:11
      Page(s):
    1583-1589

    This paper presents an efficient algorithm for computing the capacity of discrete memoryless channels. The algorithm uses Newton's method which is known to be quadratically convergent. First, a system of nonlinear equations termed Kuhn-Tucker equations is formulated, which has the capacity as a solution. Then Newton's method is applied to the Kuhn-Tucker equations. Since Newton's method does not guarantee global convergence, a continuation method is also introduced. It is shown that the continuation method works well and the convergence of the Newton algorithm is guaranteed. By numerical examples, effectiveness of the algorithm is verified. Since the proposed algorithm has local quadratic convergence, it is advantageous when we want to obtain a numerical solution with high accuracy.

  • A Design Method for Cost-Effective Self-Testing Checker for Optimal d-Unidirectional Error Detecting Codes

    Eiji FUJIWARA  Masakatsu YOSHIKAWA  

     
    PAPER

      Vol:
    E75-D No:6
      Page(s):
    771-777

    Unidirectional/Asymmetric error control codes have extensively been studied, not only from theoretical interest but from application to computer systems or communication systems. Recently, attention has been focused on detecting only d, not all, unidirectional errors, that is, d bits unidirectional error ditecting (d-UED) codes. Borden proposed an optimal nonsystematic d-UED code. This paper shows a new design method for cost-effective self-testing checker for the optimal d-UED code. The checking policy is to check whether condition of the Borden code satisfies or not. The proposed checker includes the parallel weight counter, the comparator and th e modulo adder in which new residue operation is defined and hence this makes the circuit self-testing. These circuits are designed to have all possible input patterns in order to satisfy self-testing property. Finally, the proposed checker has greatly reduced hardware amount compared to the existing one.

3501-3520hit(3578hit)