The search functionality is under construction.

IEICE TRANSACTIONS on Communications

  • Impact Factor

    0.72

  • Eigenfactor

    0.002

  • article influence

    0.1

  • Cite Score

    1.6

Advance publication (published online immediately after acceptance)

Volume E95-B No.5  (Publication Date:2012/05/01)

    Special Section on Frontiers of Information Network Science
  • FOREWORD Open Access

    Masayuki MURATA  

     
    FOREWORD

      Page(s):
    1487-1487
  • Using a Renormalization Group to Create Ideal Hierarchical Network Architecture with Time Scale Dependency Open Access

    Masaki AIDA  

     
    INVITED PAPER

      Page(s):
    1488-1500

    This paper employs the nature-inspired approach to investigate the ideal architecture of communication networks as large-scale and complex systems. Conventional architectures are hierarchical with respect to the functions of network operations due entirely to implementation concerns and not to any fundamental conceptual benefit. In contrast, the large-scale systems found in nature are hierarchical and demonstrate orderly behavior due to their space/time scale dependencies. In this paper, by examining the fundamental requirements inherent in controlling network operations, we clarify the hierarchical structure of network operations with respect to time scale. We also describe an attempt to build a new network architecture based on the structure. In addition, as an example of the hierarchical structure, we apply the quasi-static approach to describe user-system interaction, and we describe a hierarchy model developed on the renormalization group approach.

  • Information Networks Secured by the Laws of Physics Open Access

    Laszlo B. KISH  Ferdinand PEPER  

     
    INVITED PAPER

      Page(s):
    1501-1507

    In this paper, we survey the state of the art of the secure key exchange method that is secured by the laws of classical statistical physics, and involves the Kirchhoff's law and the generalized Johnson noise equation, too. We discuss the major characteristics and advantages of these schemes especially in comparison with quantum encryption, and analyze some of the technical challenges of its implementation, too. Finally, we outline some ideas about how to use already existing and currently used wire lines, such as power lines, phone lines, internet lines to implement unconditionally secure information networks.

  • Static Enforcement of Static Separation-of-Duty Policies in Usage Control Authorization Models

    Jianfeng LU  Ruixuan LI  Jinwei HU  Dewu XU  

     
    PAPER

      Page(s):
    1508-1518

    Separation-of-Duty (SoD) is a fundamental security principle for prevention of fraud and errors in computer security. It has been studied extensively in traditional access control models. However, the research of SoD policy in the recently proposed usage control (UCON) model has not been well studied. This paper formulates and studies the fundamental problem of static enforcement of static SoD (SSoD) policies in the context of UCONA, a sub-model of UCON only considering authorizations. Firstly, we define a set-based specification of SSoD policies, and the safety checking problem for SSoD in UCONA. Secondly, we study the problem of determining whether an SSoD policy is enforceable. Thirdly, we show that it is intractable (coNP-complete) to direct statically enforce SSoD policies in UCONA, while checking whether a UCONA state satisfies a set of static mutually exclusive attribute (SMEA) constraints is efficient, which provides a justification for using SMEA constraints to enforce SSoD policies. Finally, we introduce a indirect static enforcement for SSoD policies in UCONA. We show how to generate the least restrictive SMEA constraints for enforcing SSoD policies in UCONA, by using the attribute-level SSoD requirement as an intermediate step. The results are fundamental to understanding SSoD policies in UCON.

  • Study on Dissemination Patterns in Location-Aware Gossiping Networks

    Nobuharu KAMI  Teruyuki BABA  Takashi YOSHIKAWA  Hiroyuki MORIKAWA  

     
    PAPER

      Page(s):
    1519-1528

    We study the properties of information dissemination over location-aware gossiping networks leveraging location-based real-time communication applications. Gossiping is a promising method for quickly disseminating messages in a large-scale system, but in its application to information dissemination for location-aware applications, it is important to consider the network topology and patterns of spatial dissemination over the network in order to achieve effective delivery of messages to potentially interested users. To this end, we propose a continuous-space network model extended from Kleinberg's small-world model applicable to actual location-based applications. Analytical and simulation-based study shows that the proposed network achieves high dissemination efficiency resulting from geographically neutral dissemination patterns as well as selective dissemination to proximate users. We have designed a highly scalable location management method capable of promptly updating the network topology in response to node movement and have implemented a distributed simulator to perform dynamic target pursuit experiments as one example of applications that are the most sensitive to message forwarding delay. The experimental results show that the proposed network surpasses other types of networks in pursuit efficiency and achieves the desirable dissemination patterns.

  • Proposal for Autonomous Decentralized Structure Formation Based on Local Interaction and Back-Diffusion Potential

    Chisa TAKANO  Masaki AIDA  Masayuki MURATA  Makoto IMASE  

     
    PAPER

      Page(s):
    1529-1538

    Clustering technology is very important in ad hoc networks and sensor networks from the view point of reducing the traffic load and energy consumption. In this paper, we propose a new structure formation mechanism as a tool for clustering. It meets the key clustering requirements including the use of an autonomous decentralized algorithm and a consideration of the situation of individual nodes. The proposed mechanism follows the framework of autonomous decentralized control based on local interaction, in which the behavior of the whole system is indirectly controlled by appropriately designing the autonomous actions of the subsystems. As an application example, we demonstrate autonomous decentralized clustering for a two-dimensional lattice network model, and the characteristics and adaptability of the proposed method are shown. In particular, the clusters produced can reflect the environmental situation of each node given by the initial condition.

  • Topological Comparison of Brain Functional Networks and Internet Service Providers

    Kenji LEIBNITZ  Tetsuya SHIMOKAWA  Hiroaki UMEHARA  Tsutomu MURATA  

     
    PAPER

      Page(s):
    1539-1546

    Network structures can be found in almost any kind of natural or artificial systems as transport medium for communication between the respective nodes. In this paper we study certain key topological features of brain functional networks obtained from functional magnetic resonance imaging (fMRI) measurements. We compare complex network measures of the extracted topologies with those from Internet service providers (ISPs). Our goal is to identify important features which will be helpful in designing more robust and adaptive future information network architectures.

  • Mathematically Designing a Local Interaction Algorithm for Decentralized Network Systems

    Takeshi KUBO  Teruyuki HASEGAWA  Toru HASEGAWA  

     
    PAPER

      Page(s):
    1547-1557

    In the near future, decentralized network systems consisting of a huge number of sensor nodes are expected to play an important role. In such a network, each node should control itself by means of a local interaction algorithm. Although such local interaction algorithms improve system reliability, how to design a local interaction algorithm has become an issue. In this paper, we describe a local interaction algorithm in a partial differential equation (or PDE) and propose a new design method whereby a PDE is derived from the solution we desire. The solution is considered as a pattern of nodes' control values over the network each of which is used to control the node's behavior. As a result, nodes collectively provide network functions such as clustering, collision and congestion avoidance. In this paper, we focus on a periodic pattern comprising sinusoidal waves and derive the PDE whose solution exhibits such a pattern by exploiting the Fourier method.

  • An Approach to Extract Informative Rules for Web Page Recommendation by Genetic Programming

    Jaekwang KIM  KwangHo YOON  Jee-Hyong LEE  

     
    PAPER

      Page(s):
    1558-1565

    Clickstreams in users' navigation logs have various data which are related to users' web surfing. Those are visit counts, stay times, product types, etc. When we observe these data, we can divide clickstreams into sub-clickstreams so that the pages in a sub-clickstream share more contexts with each other than with the pages in other sub-clickstreams. In this paper, we propose a method which extracts more informative rules from clickstreams for web page recommendation based on genetic programming and association rules. First, we split clickstreams into sub-clickstreams by contexts for generating more informative rules. In order to split clickstreams in consideration of context, we extract six features from users' navigation logs. A set of split rules is generated by combining those features through genetic programming, and then informative rules for recommendation are extracted with the association rule mining algorithm. Through experiments, we verify that the proposed method is more effective than the other methods in various conditions.

  • Assessing the Dynamics of Bittorrent Swarms Topologies Using the Peer Exchange Protocol

    Mohamad Dikshie FAUZIE  Achmad Husni THAMRIN  Rodney VAN METER  Jun MURAI  

     
    PAPER

      Page(s):
    1566-1574

    Bittorrent is one of the most popular and successful applications in the current Internet. However, we still have little knowledge about the topology of real Bittorrent swarms, how dynamic the topology is, and how it affects overall behavior. This paper describes an experimental study of the overlay topologies of real-world Bittorrent networks, focusing on the activity of the nodes of its P2P topology and especially their dynamic relationships. Peer Exchange Protocol (PEX) messages are analyzed to infer topologies and their properties, capturing the variations of their behavior. Our measurements, verified using the Kolmogorov-Smirnov goodness of fit test and the likelihood ratio test and confirmed via simulation, show that a power-law with exponential cutoff is a more plausible model than a pure power-law distribution. We also found that the average clustering coefficient is very low, supporting this observation. Bittorrent swarms are far more dynamic than has been recognized previously, potentially impacting attempts to optimize the performance of the system as well as the accuracy of simulations and analyses.

  • Discrete Modeling of the Worm Spread with Random Scanning

    Masato UCHIDA  

     
    LETTER

      Page(s):
    1575-1579

    In this paper, we derive a set of discrete time difference equations that models the spreading process of computer worms such as Code-Red and Slammer, which uses a common strategy called “random scanning” to spread through the Internet. We show that the derived set of discrete time difference equations has an exact relationship with the Kermack and McKendrick susceptible-infectious-removed (SIR) model, which is known as a standard continuous time model for worm spreading.

  • Connection-Assured Maximum Communication of Wireless Sensors with Multiple Transmission Ranges under Energy Constraint

    Wan Yeon LEE  

     
    LETTER

      Page(s):
    1580-1583

    This paper introduces a new problem of maximizing communication performance while sustaining communication connection for a specified time without battery energy depletion on wireless sensor networks. As a solution to the problem, this paper proposes a communication scheme that maximizes the transmission rates of packets from sender sensors to destination sensors while guaranteeing the given connection time. The proposed scheme is designed to work for wireless sensors with multiple radio transmission ranges.

  • Regular Section
  • Analysis of Parallel Decodable Turbo Codes

    Orhan GAZ  

     
    PAPER-Fundamental Theories for Communications

      Page(s):
    1584-1591

    Turbo codes suffer from high decoding latency which hinders their utilization in many communication systems. Parallel decodable turbo codes (PDTCs) are suitable for parallel decoding and hence have low latency. In this article, we analyze the worst case minimum distance of parallel decodable turbo codes with both S-random interleaver and memory collision free Row-Column S-random interleaver. The effect of minimum distance on code performance is determined through computer simulations.

  • Performance of Thorup's Shortest Path Algorithm for Large-Scale Network Simulation

    Yusuke SAKUMOTO  Hiroyuki OHSAKI  Makoto IMASE  

     
    PAPER-Fundamental Theories for Communications

      Page(s):
    1592-1601

    In this paper, we investigate the performance of Thorup's algorithm by comparing it to Dijkstra's algorithm for large-scale network simulations. One of the challenges toward the realization of large-scale network simulations is the efficient execution to find shortest paths in a graph with N vertices and M edges. The time complexity for solving a single-source shortest path (SSSP) problem with Dijkstra's algorithm with a binary heap (DIJKSTRA-BH) is O((M + N) log N). An sophisticated algorithm called Thorup's algorithm has been proposed. The original version of Thorup's algorithm (THORUP-FR) has the time complexity of O(M + N). A simplified version of Thorup's algorithm (THORUP-KL) has the time complexity of O(M α(N) + N) where α(N) is the functional inverse of the Ackerman function. In this paper, we compare the performances (i.e., execution time and memory consumption) of THORUP-KL and DIJKSTRA-BH since it is known that THORUP-FR is at least ten times slower than Dijkstra's algorithm with a Fibonaccii heap. We find that (1) THORUP-KL is almost always faster than DIJKSTRA-BH for large-scale network simulations, and (2) the performances of THORUP-KL and DIJKSTRA-BH deviate from their time complexities due to the presence of the memory cache in the microprocessor.

  • Design and Implementation of the Parameterized Multi-Standard High-Throughput Radix-4 Viterbi Decoder on FPGA

    Rongchun LI  Yong DOU  Yuanwu LEI  Shice NI  Song GUO  

     
    PAPER-Fundamental Theories for Communications

      Page(s):
    1602-1611

    This paper presents a parameterized multi-standard adaptive radix-4 Viterbi decoder with high throughput and low complexity. The proposed Viterbi decoder supports constraint lengths ranging from 3-9, code rates in the range of 1/2-1/3, and arbitrary truncation lengths. We present a novel fabric of Add-Compare-Select Unit (ACSU) and methods of unsigned quantization and efficient normalization that shorten the critical path. The decoder achieves a low bit error ratio in multiple standards, such as GPRS, WiMax, LTE, CDMA, and 3G. The proposed decoder is implemented on Xilinx XC5VLX330 device and the frequency achieved is 181.7 MHz. The throughput of the proposed decoder can reach 363 Mbps, which is superior to the other current multi-standard Viterbi decoders or radix-4 Viterbi decoders on the FPGA platform.

  • Digital Compensation of IQ Imbalance for Dual-Carrier Double Conversion Receivers

    Chester Sungchung PARK  Fitzgerald Sungkyung PARK  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Page(s):
    1612-1619

    A receiver architecture and a digital IQ imbalance compensation method for dual-carrier reception are newly proposed. The impact of IQ imbalance on the baseband signal is mathematically analyzed. Based on the analysis, IQ imbalance parameters are estimated and the coupling effect of IQ imbalance is compensated using digital baseband processing alone. Simulation results show that the proposed IQ imbalance compensation successfully removes IQ imbalance. The deviation from the ideal performance is less than 1 dB when it is applied to the 3GPP-LTE carrier aggregation.

  • Fiber Endface Sealing Technique for Optical Connection of Holey Fibers with Low Loss and Reflection

    Masaki WAKI  Kyozo TSUJIKAWA  Yuji AZUMA  

     
    PAPER-Optical Fiber for Communications

      Page(s):
    1620-1624

    We propose a new fiber endface sealing technique for the optical connection of holey fibers (HFs). We experimentally investigate the optimum sealing condition for physical contact using a carbon dioxide (CO2) laser. We use this technique to fabricate an HF connector, and achieve low splice loss and a high return loss when splicing with a conventional SMF connector. With hole-assisted fiber (HAF), the obtained splice and return losses are almost the same as those obtained with the conventional method. In particular, with photonic crystal fiber (PCF), we obtained a minimum splice loss of 0.2 dB and a return loss exceeding 50 dB at wavelengths of 1.31 and 1.55 µm.

  • ONU Power Saving Scheme for EPON System

    Hiroaki MUKAI  Fumihiko TANO  Masaki TANAKA  Seiji KOZAKI  Hideaki YAMANAKA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Page(s):
    1625-1632

    PON (Passive Optical Network) achieves FTTH (Fiber To The Home) economically, by sharing an optical fiber among plural subscribers. Recently, global climate change has been recognized as a serious near term problem. Power saving techniques for electronic devices are important. In PON system, the ONU (Optical Network Unit) power saving scheme has been studied and defined in XG-PON. In this paper, we propose an ONU power saving scheme for EPON. Then, we present an analysis of the power reduction effect and the data transmission delay caused by the ONU power saving scheme. According to the analysis, we propose an efficient provisioning method for the ONU power saving scheme which is applicable to both of XG-PON and EPON.

  • Optical Fiber Connection Navigation System Using Visible Light Communication in Central Office with Economic Evaluation

    Masaki WAKI  Shigenori URUNO  Hiroyuki OHASHI  Tetsuya MANABE  Yuji AZUMA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Page(s):
    1633-1642

    We propose an optical fiber connection navigation system that uses visible light communication for an integrated distribution module in a central office. The system realizes an accurate database, requires less skilled work to operate and eliminates human error. This system can achieve a working time reduction of up to 88.0% compared with the conventional work without human error for the connection/removal of optical fiber cords, and is economical as regards installation and operation.

  • Mobility-Based Mobile Relay Selection in MANETs

    Gilnam KIM  Hyoungjoo LEE  Kwang Bok LEE  

     
    PAPER-Network

      Page(s):
    1643-1650

    The future wireless mobile communication networks are expected to provide seamless wireless access and data exchange to mobile users. In particular, it is expected that the demand for ubiquitous data exchange between mobile users will increase with the widespread use of various wireless applications of the intelligent transportation system (ITS) and intelligent vehicles. Mobile ad hoc networks (MANETs) are one of the representative research areas pursuing the technology needed to satisfy the increasing mobile communication requirements. However, most of the works on MANET systems do not take into account the continuous and dynamic changes of nodal mobility to accommodate system design and performance evaluation. The mobility of nodes limits the reliability of communication between the source and the destination node since a link between two continuously moving nodes is established only when one node enters the transmission range of the other. To alleviate this problem, mobile relay has been studied. In particular, it is shown that relay selection is an efficient way to support nodal mobility in MANET systems. In this paper, we propose a mobility-based relay selection algorithm for the MANET environment. Firstly, we define the lifetime as the maximum link duration for which the link between two nodes remains active. Therefore, the lifetime indicates the reliability of the relay link which measures its capability to successfully support relayed communication when requested by the source node. Furthermore, we consider a series of realistic scenarios according to the randomness of nodal mobility. Thus, the proposed algorithm can be easily applied in practical MANET systems by choosing the appropriate node mobility behavior. The numerical results show that the improved reliability of the proposed algorithm's relayed communication is achieved with a proper number of mobile relay nodes rather than with the conventional selection algorithm. Lastly, we show that random mobility of the individual nodes enhances reliability of the network in a sparse network environment.

  • Lifetime-Aware Battery Allocation for Wireless Sensor Network under Cost Constraints

    Yongpan LIU  Yiqun WANG  Hengyu LONG  Huazhong YANG  

     
    PAPER-Network

      Page(s):
    1651-1660

    Battery-powered wireless sensor networks are prone to premature failures because some nodes deplete their batteries more rapidly than others due to workload variations, the many-to-one traffic pattern, and heterogeneous hardware. Most previous sensor network lifetime enhancement techniques focused on balancing the power distribution, assuming the usage of the identical battery. This paper proposes a novel fine-grained cost-constrained lifetime-aware battery allocation solution for sensor networks with arbitrary topologies and heterogeneous power distributions. Based on an energy–cost battery pack model and optimal node partitioning algorithm, a rapid battery pack selection heuristic is developed and its deviation from optimality is quantified. Furthermore, we investigate the impacts of the power variations on the lifetime extension by battery allocation. We prove a theorem to show that power variations of nodes are more likely to reduce the lifetime than to increase it. Experimental results indicate that the proposed technique achieves network lifetime improvements ranging from 4–13 over the uniform battery allocation, with no more than 10 battery pack levels and 2-5 orders of magnitudes speedup compared with a standard integer nonlinear program solver (INLP).

  • QoS Based Distributed Rate-Split Scheme in Heterogeneous Cellular Networks

    Wonjong NOH  

     
    PAPER-Network

      Page(s):
    1661-1668

    In heterogeneous cellular networks (HCN), which consists of macrocells and numerous femtocells, efficient interference management schemes between macrocells and femtocells are so crucial to the overall system performance. To mitigate intercell interference in HCN, we propose a new rate-split transmission scheme which has the following characteristics. First, it supports user quality of service (QoS) with the least intercell interference. Second, it is a low complexity and distributed scheme using only Interference to Signal and Noise Ratio (ISNR). An evaluation confirms that the proposed scheme offers better performance than legacy schemes which are not considering user QoS.

  • Parallel Transferable Uniform Multi-Round Algorithm for Minimizing Makespan

    Hiroshi YAMAMOTO  Masato TSURU  Katsuyuki YAMAZAKI  Yuji OIE  

     
    PAPER-Network

      Page(s):
    1669-1678

    In parallel computing systems using the master/worker model for distributed grid computing, as the size of handling data grows, the increase in the data transmission time degrades the performance. For divisible workload applications, therefore, multiple-round scheduling algorithms have been being developed to mitigate the adverse effect of longer data transmission time by dividing the data into chunks to be sent out in multiple rounds, thus overlapping the times required for computation and transmission. However, a standard multiple-round scheduling algorithm, Uniform Multi-Round (UMR), adopts a sequential transmission model where the master communicates with one worker at a time, thus the transmission capacity of the link attached to the master cannot be fully utilized due to the limits of worker-side capacity. In the present study, a Parallel Transferable Uniform Multi-Round algorithm (PTUMR) is proposed. It efficiently utilizes the data transmission capacity of network links by allowing chunks to be transmitted in parallel to workers. This algorithm divides workers into groups in a way that fully uses the link bandwidth of the master under some constraints and considers each group of workers as one virtual worker. In particular, introducing a Grouping Threshold effectively deals with very heterogeneous workers in both data transmission and computation capacities. Then, the master schedules sequential data transmissions to the virtual workers in an optimal way like in UMR. The performance evaluations show that the proposed algorithm achieves significantly shorter turnaround times (i.e., makespan) compared with UMR regardless of heterogeneity of workers, which are close to the theoretical lower limits.

  • ER-TCP (Exponential Recovery-TCP): High-Performance TCP for Satellite Networks

    Mankyu PARK  Minsu SHIN  Deockgil OH  Doseob AHN  Byungchul KIM  Jaeyong LEE  

     
    PAPER-Network

      Page(s):
    1679-1688

    A transmission control protocol (TCP) using an additive increase multiplicative decrease (AIMD) algorithm for congestion control plays a leading role in advanced Internet services. However, the AIMD method shows only low link utilization in lossy networks with long delay such as satellite networks. This is because the cwnd dynamics of TCP are reduced by long propagation delay, and TCP uses an inadequate congestion control algorithm, which does not distinguish packet loss from wireless errors from that due to congestion of the wireless networks. To overcome these problems, we propose an exponential recovery (ER) TCP that uses the exponential recovery function for rapidly occupying available bandwidth during a congestion avoidance period, and an adaptive congestion window decrease scheme using timestamp base available bandwidth estimation (TABE) to cope with wireless channel errors. We simulate the proposed ER-TCP under various test scenarios using the ns-2 network simulator to verify its performance enhancement. Simulation results show that the proposal is a more suitable TCP than the several TCP variants under long delay and heavy loss probability environments of satellite networks.

  • Fast Mobility Management for Delay-Sensitive Applications Using Multiple Tunnels in Vehicular Networks

    Jong-Tae PARK  Seung-Man CHUN  

     
    PAPER-Network

      Page(s):
    1689-1701

    Most of the IP mobility management schemes based on the IETF's MIPv6 may not be suitable for delay-sensitive vehicular applications since there will be frequent service disruptions as the moving vehicles frequently change their points of wireless network attachment. This paper presents a fast IP mobility management scheme for vehicular networks where multiple wireless network interfaces are used to perform fast handovers without handover latency or packet loss. In order to do this, the IETF standard HMIPv6 has been extended, where multiple simultaneous tunnels between the HMIPv6 mobility anchor point (MAP) and the mobile gateway are dynamically constructed. We have designed the architecture for a mobile gateway for supporting multiple tunnels, the structure of the extension MAP (E-MAP), and the signaling procedure to achieve fast IP handover in vehicular networks. Both mathematical analysis and simulation have been done for performance evaluation. The results show that the proposed scheme is superior to HMIPv6 and MIPv6 with regard to handover latency and packet loss as the vehicle moves between different wireless network cells at high speed.

  • Traffic Adaptive Distributed Backoff Control Mechanism for Cluster-Based IEEE802.15.4 WSNs with Traffic Fluctuations

    Kazuo MORI  Katsuhiro NAITO  Hideo KOBAYASHI  

     
    PAPER-Network

      Page(s):
    1702-1710

    The traffic adaptive 2-level active period control has been proposed as a traffic adaptation mechanism to handle temporal and spatial (geographical) traffic fluctuations in cluster-based wireless sensor networks (WSNs) employing IEEE802.15.4 medium access control (MAC). This paper proposes a traffic adaptive distributed backoff control mechanism for cluster-based WSNs with the traffic adaptive 2-level active period control to enhance the system performance, especially transmission performance. The proposed mechanism autonomously adjusts the starting time of the backoff procedure for channel accesses in the contention access period (CAP) specified by the IEEE802.15.4 MAC, and then distributes the channel access timing over a wide range within the CAP, which can mitigate channel access congestion. The results of computer simulations show that the proposed mechanism can improve the transmission delay performance while keeping the enhancement in throughput and energy consumption at the cluster-based WSNs under non-uniform traffic environments.

  • Detecting Heap-Spraying Code Injection Attacks in Malicious Web Pages Using Runtime Execution

    YoungHan CHOI  HyoungChun KIM  DongHoon LEE  

     
    PAPER-Internet

      Page(s):
    1711-1721

    The growing use of web services is increasing web browser attacks exponentially. Most attacks use a technique called heap spraying because of its high success rate. Heap spraying executes a malicious code without indicating the exact address of the code by copying it into many heap objects. For this reason, the attack has a high potential to succeed if only the vulnerability is exploited. Thus, attackers have recently begun using this technique because it is easy to use JavaScript to allocate the heap memory area. This paper proposes a novel technique that detects heap spraying attacks by executing a heap object in a real environment, irrespective of the version and patch status of the web browser. This runtime execution is used to detect various forms of heap spraying attacks, such as encoding and polymorphism. Heap objects are executed after being filtered on the basis of patterns of heap spraying attacks in order to reduce the overhead of the runtime execution. Patterns of heap spraying attacks are based on analysis of how an web browser accesses benign web sites. The heap objects are executed forcibly by changing the instruction register into the address of them after being loaded into memory. Thus, we can execute the malicious code without having to consider the version and patch status of the browser. An object is considered to contain a malicious code if the execution reaches a call instruction and then the instruction accesses the API of system libraries, such as kernel32.dll and ws_32.dll. To change registers and monitor execution flow, we used a debugger engine. A prototype, named HERAD(HEap spRAying Detector), is implemented and evaluated. In experiments, HERAD detects various forms of exploit code that an emulation cannot detect, and some heap spraying attacks that NOZZLE cannot detect. Although it has an execution overhead, HERAD produces a low number of false alarms. The processing time of several minutes is negligible because our research focuses on detecting heap spraying. This research can be applied to existing systems that collect malicious codes, such as Honeypot.

  • A Novel 2-D OFDM-DS-CDMA Receiver with Frequency-Time Spreading

    Joy Iong-Zong CHEN  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    1722-1729

    This paper presents a novel 2-D (2-dimension) receiver that adopts the reception scheme to promote OFDM-DS-CDMA (orthogonal frequency division multiplexing multi-carrier coded-division multiple-access) system performance. The system model includes spread coding and a system block diagram of the 2-D receiver shown graphically with 3-D (three dimensions) plots. The analytical calculation of system performance for an OFDM-DS-CDMA system combined with the proposed receiver equipment is investigated. To evaluate the results from the channel fading effect is considered over the correlated fading environments. The correlated-Nakagami-m statistical distribution is taken into account in the evaluation. The results show that the number of users, the number of subcarriers and the fading channel correlation generally affect OFDM-DS-CDMA systems. The system is also influenced by the Doppler shift and the signal propagation environment (fading parameter).

  • Impact of Femtocell Deployment on Existing Macrocells

    Seokhyun YOON  Joonyoung CHO  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    1730-1737

    The impact of co-channel deployment of femtocells on existing macro-cellular systems is investigated considering the use of techniques to resolve the loud neighbor problem. There are several approaches to this aim, for example, femtocell power control, interference coordination, and opening access to femtocells. Of these, coordinated scheduling, including power control, and their impact will be the main focus of this work. In the context of 3GPP-LTE, we examine under various operational scenarios the performance in terms of the average and 5% worst user throughput, a useful measure of fairness among users, both for femto and macro cells. Although recent studies have shown that co-channel femtocell has a minor impact on the macrocell performance in average sense, a non-negligible percentage of users may lose their opportunity to get satisfactory data service and, hence, we focus more on the 5% worst users.

  • Prototype Hardware for TDD Two-Way Multi-Hop Relay Network Using MIMO Network Coding

    Keiichi MIZUTANI  Takehiro MIYAMOTO  Kei SAKAGUCHI  Kiyomichi ARAKI  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    1738-1750

    This paper develops the first prototype hardware for a TDD two-way multi-hop relay network with MIMO network coding. Since conventional wireless multi-hop relay networks have the drawback of low data rate, TDD two-way multi-hop relay networks have been studied as a solution to realize high data rate recently. In these networks, forward and backward streams are spatially multiplexed by using interference cancellation techniques such as MIMO beamforming or MIMO network coding. In this paper, a demonstration system for the TDD two-way multi-hop relay network with MIMO network coding (called 2-way relay network hereafter) is developed using the prototype hardware. In the demonstration system, each transmitter and receiver performs network coded broadcast and MIMO multiple access, respectively. By using the demonstration system, network throughput is measured in an indoor environment to prove the realization and effectiveness of the 2-way relay network. From the results of network throughput, it is found that the 2-way relay network can achieve high network throughput approaching theoretical upper bound even in low average end-to-end SNR area where network throughput of the direct link degrades severely. From these results, the realization and effectiveness of the 2-way relay network can be proved in the real indoor environment.

  • Opportunistic Scheduling for Hybrid Network Coding and Cooperative Relaying Techniques in Wireless Networks Open Access

    Lin SHAN  Hidekazu MURATA  Sonia AISSA  Susumu YOSHIDA  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    1751-1760

    With the purpose of improving the performance of next generation wireless networks, cooperative relaying (CoR) and network coding (NC) are promising techniques. The number of time slots required for NC in bidirectional transmission is less than that required for CoR, and hence, NC can achieve higher throughput performance than CoR. However, the disadvantage of NC is that asymmetric traffic ratio conditions might cause a significant decrease in the bidirectional throughput. In contrast, CoR is robust to asymmetric traffic ratio conditions. In this paper, in order to improve the throughput of NC even under asymmetric traffic ratio conditions, we propose an opportunistic scheduling scheme for hybrid NC and CoR. In the proposed scheduling scheme, the transmission protocol with best throughput performance can be adaptively selected based on instantaneous channel state information. Computer simulation results reveal that the proposed scheduling scheme not only achieve higher throughput than the conventional scheduling scheme but is also robust against asymmetric traffic ratio conditions. By adjusting the scheduler's parameter, the proposed scheduling scheme can provide a tradeoff between the throughput and the traffic ratio. Moreover, in certain cases, maximizing the throughput of NC and guaranteeing the offered traffic ratio can be achieved at the same time.

  • Performance Analysis of SSC Transmit Diversity with Causal CSI under Time-Correlated Flat Fading Channels

    Shuang ZHAO  Hongwen YANG  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    1761-1769

    Switch-and-stay combining (SSC) is a simple diversity technique where a single radio frequency (RF) chain is connected to one of several antenna branches and stays there if the channel quality is satisfied or otherwise switches to a new branch. Compared with Selection Combining (SC), SSC requires less overhead in channel estimation and antenna selection feedback. In this paper, we analyze the performance of SSC in a time-correlated flat fading channel and with causal channel state information. We derive the general expressions for the distribution of the output signal-to-noise ratio (SNR), outage rate and average bit error rate (ABER) and then the analytical results are compared with the simulation results under the Jakes Rayleigh fading channel. Our results show that (1) For slowly varying channels, L branch SSC can achieve the full diversity order and the same outage rate as SC; (2) Increasing the number of antenna branches can improve the performance of SSC, however, the gain from adding antennas diminishes quickly as the channel variation speed increases. Moreover, to avoid the complexity in optimizing the fixed threshold, we also propose a simple adaptive SSC scheme which has almost the same ABER as the SSC with optimized fixed threshold.

  • Iterative MAP Receiver Employing Forward Channel Estimation via Message Passing for OFDM over Fast Fading Channels

    Kazushi MURAOKA  Kazuhiko FUKAWA  Hiroshi SUZUKI  Satoshi SUYAMA  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    1770-1783

    This paper proposes an iterative maximum a posteriori (MAP) receiver for orthogonal frequency division multiplexing (OFDM) mobile communications under fast-fading conditions. The previous work in [21] developed a MAP receiver based on the expectation-maximization (EM) algorithm employing the differential model, which can allow correlated time-variation of channel impulse responses. In order to make such a MAP receiver more robust against time-variant channels, this paper proposes two new message-passing algorithms derived from factor graphs; subcarrier removal and partial turbo processing. The subcarrier removal estimates the channel frequency response by using all subcarriers other than the targeted subcarrier. Such channel estimate can be efficiently calculated by removing information on the targeted subcarrier from the estimate of the original EM algorithm that uses all the subcarriers. This modification can avoid the repetitive use of incorrectly detected signals for the channel estimation. On the other hand, the partial turbo processing performs symbol-by-symbol channel decoding by using a symbol interleaver. Owing to this process, the current channel estimate, which is more accurate due to the decoding gain, can be used as the initial channel estimate for the next symbol. Computer simulations under fast multipath fading conditions demonstrate that the subcarrier removal and the partial turbo processing can improve the error floor and the convergence speed, respectively, compared to the conventional MAP receiver.

  • Interference Management for LTE Femtocell System Using Power Control

    Kyong-Tak CHO  Junsik KIM  Gwangil JEON  Byunghan RYU  Namhoon PARK  

     
    PAPER-Wireless Communication Technologies

      Page(s):
    1784-1792

    Since femtocells are deployed in a two tier cellular network, along with macrocells operating on the same channel, interference between them limits the overall performance of the network. Without any control of the femtocell operation, pre-deployed macrocells will experience severe interference, which is not consistent with the current femtocell deployment principle. In this paper, to resolve this problem, a mathematical framework that optimizes the downlink transmission power of femtocells is formulated. Based on the formulated framework, we derive the optimal value of the transmission power so that the transmission affects the pre-deployed macrocell's downlink performance at a minimum scale, while providing sufficient Quality of Service (QoS) to its served users. Furthermore, to reduce the complexity of the power control process, we propose an Interference Estimation scheme which approximates the interference levels between different pairs of macrocell and femtocell base stations. The feasibility of this estimation process is shown by deriving the lower and upper bound of the estimation error. Through simulations, compared to no power control, we show that our proposed method provides a 17.64% reduction in macro user's outage probability, 5.9 dB decrease of interference on cell-edge macrocell users, and a 1.41 times increase in average user throughput.

  • Time Slot Assignment Algorithms to Upstream Links for Decreasing Transmission Latency in IEEE 802.16j Networks

    Go HASEGAWA  Shinpei TANAKA  Yoshiaki TANIGUCHI  Hirotaka NAKANO  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Page(s):
    1793-1801

    In this paper, the authors focus on upstream transmission in TDMA-based IEEE 802.16j and propose two time slot assignment algorithms to decrease end-to-end transmission latency. One of the proposed algorithms assigns time slots considering the hop count from a gateway node, and the other takes the path from the relay node to the gateway node into account. In addition, a restriction in assigning time slots is introduced to reduce the delay at each relay node. The algorithms with the restriction assign later time slots considering the time slot order of links connecting a relay node. The performance of the proposed algorithms is evaluated through simulation experiments from the viewpoints of frame size and end-to-end transmission latency, and it is confirmed that the proposed algorithms achieve small transmission latency regardless of packet generation rate in the network, and decrease the transmission latency by up to 70% compared with the existing algorithm.

  • Channel Aggregation Schemes for Cognitive Radio Networks

    Jongheon LEE  Jaewoo SO  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Page(s):
    1802-1809

    This paper proposed three channel aggregation schemes for cognitive radio networks, a constant channel aggregation scheme, a probability distribution-based variable channel aggregation scheme, and a residual channel-based variable channel aggregation scheme. A cognitive radio network can have a wide bandwidth if unused channels in the primary networks are aggregated. Channel aggregation schemes involve either constant channel aggregation or variable channel aggregation. In this paper, a Markov chain is used to develop an analytical model of channel aggregation schemes; and the performance of the model is evaluated in terms of the average sojourn time, the average throughput, the forced termination probability, and the blocking probability. Simulation results show that channel aggregation schemes can reduce the average sojourn time of cognitive users by increasing the channel occupation rate of unused channels in a primary network.

  • Throughput Optimization in Rateless Coded Cooperative Relay Networks

    Ashish JAMES  A.S. MADHUKUMAR  Fumiyuki ADACHI  

     
    LETTER-Fundamental Theories for Communications

      Page(s):
    1810-1814

    By performing the encoding operation on several message packets, rateless coding in cooperative networks has the potential risk of processing information already available to the receivers. In this paper, the intermediate packet decodability of rateless codes is exploited to mitigate such redundant packet processing at the cooperating nodes. The message packets that are already decoded at the receivers are eliminated from further processing by harnessing the back channel (from receiver to transmitter) for feedback. This reduces the required number of transmissions and optimizes the throughput of the network.

  • Dynamic Bubble-Check Algorithm for Check Node Processing in Q-Ary LDPC Decoders

    Wei LIN  Baoming BAI  Xiao MA  Rong SUN  

     
    LETTER-Fundamental Theories for Communications

      Page(s):
    1815-1818

    A simplified algorithm for check node processing of extended min-sum (EMS) q-ary LDPC decoders is presented in this letter. Compared with the bubble check algorithm, the so-called dynamic bubble-check (DBC) algorithm aims to further reduce the computational complexity for the elementary check node (ECN) processing. By introducing two flag vectors in ECN processing, The DBC algorithm can use the minimum number of comparisons at each step. Simulation results show that, DBC algorithm uses significantly fewer comparison operations than the bubble check algorithm, and presents no performance loss compared with standard EMS algorithm on AWGN channels.

  • A Privacy-Protecting Authentication Scheme for Roaming Services with Smart Cards

    Kyungho SON  Dong-Guk HAN  Dongho WON  

     
    LETTER-Fundamental Theories for Communications

      Page(s):
    1819-1821

    In this work we propose a novel smart card based privacy-protecting authentication scheme for roaming services. Our proposal achieves so-called Class 2 privacy protection, i.e., no information identifying a roaming user and also linking the user's behaviors is not revealed in a visited network. It can be used to overcome the inherent structural flaws of smart card based anonymous authentication schemes issued recently. As shown in our analysis, our scheme is computationally efficient for a mobile user.

  • MIMO-OFDM Based Broadband Power Line Communication Using Antenna and Fading Diversity

    Jeonghwa YOO  Sangho CHOE  Nazcar PINE  

     
    LETTER-Transmission Systems and Transmission Equipment for Communications

      Page(s):
    1822-1825

    We present MIMO-OFDM based broadband power line communication (BPLC) that uses antenna and fading diversity. We evaluate the proposed MIMO-OFDM over BPLC channels, with or without cross-talk between antenna paths. The proposed scheme employs maximum ratio combining (MRC) that effectively combines both multiple antenna diversity gain and multipath fading diversity gain over 3-phase (22 MIMO, outdoor) or 1-phase (SISO, indoor) power line channels. Simulation results prove the performance advantage of the proposed scheme, whether or not cross-talk exists, over existing schemes.

  • Location-Aware Social Routing in Delay Tolerant Networks

    Guangchun LUO  Junbao ZHANG  Ke QIN  Haifeng SUN  

     
    LETTER-Network

      Page(s):
    1826-1829

    This letter proposes an efficient Location-Aware Social Routing (LASR) scheme for Delay Tolerant Networks (DTNs). LASR makes forwarding decisions based on a new metric which uses location information to reflect the node relations and community structure. Simulation results are presented to support the effectiveness of our scheme.

  • ELBA: A New Efficient Load-Balancing Association in IEEE 802.15.4-Based Wireless Sensor Networks

    Jae-Hyung LEE  Dong-Sung KIM  Soo-Young SHIN  

     
    LETTER-Network

      Page(s):
    1830-1833

    In this letter, a novel association method called ELBA (efficient load balancing association) is proposed for improved load balancing in IEEE 802.15.4-based WSNs (wireless sensor networks). ELBA adds new nodes to the network in an efficient load-balancing manner by exploiting not only RSSI (received signal strength indicator), which is used in the standard, but also traffic-load, the number of allocated GTSs (guaranteed time slots), and the number of parent nodes and child nodes. Simulation results show that ELBA offers better performance in load balancing and preventing congestion.

  • Adaptive Directional Multicast Scheme in mmWave WPANs with Directional Antennas

    Kyungchul SHIN  Youngsun KIM  Chul-Hee KANG  

     
    LETTER-Network

      Page(s):
    1834-1838

    This letter considers problems with an efficient link layer multicasting technique in a wireless personal area network environment using a directional antenna. First, we propose an adaptive directional multicast scheme (ADMS) for delay-sensitive applications in mmWave WPAN with directional antenna. Second, the proposed ADMS aims to improve throughput as well as satisfy the application-specific delay requirements. We evaluate the performances of legacy Medium Access Control, Life Centric Approach, and adaptive directional multicast schemes via QualNet 5.0. Our results show that the proposed scheme provides better performance in terms of total network throughput, average transmission time, packet delivery ratio and decodable frame ratio.

  • NEAR: A Neighbor-Cooperation-Based Off-Duty Eligibility Acquisition Rule for Wireless Sensor Nodes

    Juhua PU  Jia CHEN  Xiaolan TANG  Zhicheng HAN  

     
    LETTER-Network

      Page(s):
    1839-1843

    This paper presents an efficient algorithm, NEAR, that allows sensor nodes to acquire their off-duty eligibility. Any node only needs to calculate the coverage degrees of the intersections on its sensing boundary, and cooperates with its neighbors to know if it is redundant or not. The computing complexity of NEAR is only O(nlogn).

  • Miniaturized Broadband Antenna Combining Fractal Patterns and Self-Complementary Structures for UWB Applications

    Vasil DIMITROV  Akira SAITOU  Kazuhiko HONJO  

     
    LETTER-Antennas and Propagation

      Page(s):
    1844-1847

    Miniaturized broadband antennas combining a fractal pattern and a self-complementary structure are demonstrated for UWB applications. Using four kinds of fractal patterns generated with an octagon initiator, similar to a self-complementary structure, we investigate the effect of the fractal pattern on broadband performance. The lower band-edge frequency of the broad bandwidth is decreased by the reduced constant input impedance, which is controlled by the vacant area size inside the fractal pattern. The reduced constant input impedance is shown to be produced by the extended current distribution flowing along the vacant areas. Given the results, miniaturized broadband antennas, impedance-matched to 50 Ω, are designed and fabricated. The measured return loss was better than 10 dB between 2.95 and 10.7 GHz with a size of 2712.5 mm. The lower band-edge frequency was reduced by 28% compared with the initiator.

  • Joint Frequency Offset and Channel Estimation for OFDM/OQAM Systems

    Guobing CHENG  Yue XIAO  Shaoqian LI  Hui YAN  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    1848-1851

    OFDM/offset-QAM (OFDM/OQAM) has been proven to be a promising multi-carrier transmission technique. However, carrier frequency offset (CFO) can lead to severe inter-carrier interference (ICI) and performance degradation. Meanwhile, channel estimation is also an important issue because of the intrinsic characteristics of OFDM/OQAM. In this paper, a novel pilot structure and a frequency-domain cross-correlation algorithm are proposed for the joint CFO and channel estimation. Analysis and simulation results validate the effectiveness of the proposed pilot structure and estimation algorithm.

  • Exact Average SER Performance Analysis for the Nth Best Opportunistic Amplify-and-Forward Relay Systems

    Sangho NAM  Kyunbyoung KO  Daesik HONG  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    1852-1855

    This letter presents a method for obtaining an exact average symbol error rate (ASER) of M-phase shift keying (M-PSK) transmission for the Nth best opportunistic amplify-and-forward (OAF) relay systems over Rayleigh fading channels. This approach begins with deriving the relay selection probability when a relay is selected as the Nth best one with respect to the received signal-to-noise ratio. We then derive the modified moment generating function (MGF) for the Nth best OAF relay systems by taking the given Nth best-relay selection probability into consideration. Based on the modified MGF, we derive the exact ASER which accurately explicates the Nth best OAF relay system characteristics. Simulation results confirm the exactness of the analysis results for M-PSK transmission with respect to the number of relays, the Nth best relay selection, and the relay position.

  • Maximum-Likelihood Precoder Selection for ML Detector in MIMO-OFDM Systems

    Sung-Yoon JUNG  Jong-Ho LEE  Daeyoung PARK  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    1856-1859

    Spatial Multiplexing with precoding provides an opportunity to enhance the capacity and reliability of multi-input multi-output orthogonal frequency division multiplexing (MIMO-OFDM) systems. However, precoder selection may require knowledeg of all subcarriers, which may cause a large amount of feedback if not properly designed. In addition, if the maximum-likelihood (ML) detector is employed, the conventional precoder selection that maximizes the minimum stream SNR is not optimal in terms of the error probability. In this paper, we propose to reduce the feedback overhead by introducing a ML clustering concept in selecting the optimal precoder for ML detector. Numerical results show that the proposed precoder selection based on the ML clustering provides enhanced performance for ML receiver compared with conventional interpolation and clustering algorithms.

  • Spring-Model-Based Wireless Localization in Cooperative User Environments

    Wei KE  Lenan WU  Chenhao QI  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    1860-1863

    To overcome the shortcomings of conventional cellular positioning, a novel cooperative location algorithm that uses the available peer-to-peer communication between the mobile terminals (MTs) is proposed. The main idea behind the proposed approach is to incorporate the long- and short-range location information to improve the estimation of the MT's coordinates. Since short-range communications among MTs are characterized by high line-of-sight (LOS) probability, an improved spring-model-based cooperative location method can be exploited to provide low-cost improvement for cellular-based location in the non-line-of-sight (NLOS) environments.

  • Automatic IQ Imbalance Compensation Technique for Quadrature Modulator by Single-Tone Testing

    Minseok KIM  Yohei KONISHI  Jun-ichi TAKADA  Boxin GAO  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    1864-1868

    This letter proposes an automatic IQ imbalance compensation technique for quadrature modulators by means of spectrum measurement of RF signal using a spectrum analyzer. The analyzer feeds back only magnitude information of the frequency spectrum of the signal. To realize IQ imbalance compensation, the conventional method of steepest descent is modified; the descent direction is empirically determined and a variable step-size is introduced for accelerating convergence. The experimental results for a four-channel transmitter operating at 11 GHz are presented for verification.

  • Control-Channel-Hopping Scheme for Mitigating Scrambling Attacks in OFDMA Systems: AJOU

    Jaemin JEUNG  Junwoo JUNG  Jaesung LIM  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    1869-1872

    We propose a control-channel-hopping scheme to mitigate scrambling attacks in orthogonal frequency division multiple access (OFDMA) systems. A scrambling attack can be realized by jamming specific frames after monitoring the control channel or by jamming the control channel itself. This letter details a situation in which the control channel is scattered among OFDMA subcarriers. The scattered control channel has a two-dimensional hopping sequence with a mixed order. Simulation results show that our scheme can prevent a jammer from monitoring the control channel and from attacking the channel itself.

  • Symbol Error Rate of Underlay Cognitive Relay Systems over Rayleigh Fading Channel

    Khuong HO VAN  Vo Nguyen Quoc BAO  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    1873-1877

    Underlay cognitive systems allow secondary users (SUs) to access the licensed band allocated to primary users (PUs) for better spectrum utilization with the power constraint imposed on SUs such that their operation does not harm the normal communication of PUs. This constraint, which limits the coverage range of SUs, can be offset by relaying techniques that take advantage of shorter range communication for lower path loss. Symbol error rate (SER) analysis of underlay cognitive relay systems over fading channel has not been reported in the literature. This paper fills this gap. The derived SER expressions are validated by simulations and show that underlay cognitive relay systems suffer a high error floor for any modulation level.

  • On the ICI Mitigation in OFDM Systems by Using the Segment-Based QR Decomposition

    Yung-Yi WANG  Hsu-Jah HU  Yen-Lin CHEN  

     
    LETTER-Wireless Communication Technologies

      Page(s):
    1878-1881

    In this study, a precoding scheme based on QR-decomposition is proposed for mitigating the inter-carrier-interference (ICI) in orthogonal-frequency-division-multiplexing (OFDM) systems. The proposed approach first subjects the ICI matrix to QR decomposition so that the ICI effect is transformed into its spectrally causal equivalent. With this causality, the precoding can then be conducted based on the resultant spectrally causal matrix. In addition, by using the stationary property of the ICI factors, in conjunction with zero padding, we implement the QR-based precoding in a segmentation manner which can significantly alleviate the computational complexity imposed by QR decomposition while eliminating ICI within each segment. This study also analyzes the residue interference power induced by the segmentation. The residue interference power is then accordingly used to determine the order of zero padding. Computer simulations support the validity of the proposed approach.

  • Basis Vector Estimation Analysis for Identification of Block Orthogonal Modulations

    Takafumi KINUGASA  Ikuo OKA  Shingo ATA  

     
    LETTER-Terrestrial Wireless Communication/Broadcasting Technologies

      Page(s):
    1882-1885

    Cognitive radios are intelligent communications, and are expected to more efficiently utilize the radio channel. Modulation identification is one of the key issues in the cognitive radios. Many works were devoted to the classification of symbol-by-symbol modulations, however, few papers on block modulations have been published. In this paper, an identification error analysis is presented for block orthogonal modulations using General Orthogonal Modulation~(GOM). A symbol error probability is derived for the identified block orthogonal modulation. Numerical results of 4-dimensional block orthogonal modulation are presented with simulation results.

  • Resource Allocation for Interference Avoidance in OFDMA-TDD Based Femtocell Networks

    IlKwon CHO  Se-Jin KIM  Choong-Ho CHO  

     
    LETTER-Terrestrial Wireless Communication/Broadcasting Technologies

      Page(s):
    1886-1889

    In this letter, we propose a novel resource allocation scheme to enhance downlink system performance for orthogonal frequency division multiple access (OFDMA) and time division duplex (TDD) based femtocell networks. In the proposed scheme, the macro base station (mBS) and femto base stations (fBSs) service macro user equipments (mUEs) and femto user equipments (fUEs) in inner and outer zones in different periods to reduce interference substantially. Simulations show the proposed scheme outperforms femtocell networks with fractional frequency reuse (FFR) systems in terms of the system capacity and outage probability for mUEs and fUEs.

  • A Novel Change Detection Method for Unregistered Optical Satellite Images

    Wang LUO  Hongliang LI  Guanghui LIU  Guan GUI  

     
    LETTER-Multimedia Systems for Communications

      Page(s):
    1890-1893

    In this letter, we propose a novel method for change detection in multitemporal optical satellite images. Unlike the tradition methods, the proposed method is able to detect changed region even from unregistered images. In order to obtain the change detection map from the unregistered images, we first compute the sum of the color difference (SCD) of a pixel to all pixels in an input image. Then we calculate the SCD of this pixel to all pixels in the other input image. Finally, we use the difference of the two SCDs to represent the change detection map. Experiments on the multitemporal images demonstrates the good performance of the proposed method on the unregistered images.

  • Quality and Complexity Controllable DVC Bitstream Organizer

    Chul Keun KIM  Yongwoo CHO  Jongbin PARK  Doug Young SUH  Byeungwoo JEON  

     
    LETTER-Multimedia Systems for Communications

      Page(s):
    1894-1897

    Applying Distributed Video Coding (DVC) to mobile devices that have limited computation and power resources can be a very challenging problem due to its high-complexity decoding. To address this, this paper proposes a DVC bitstream organizer. The proposed DVC bitstream organizer reduces the complexity associated with repetitive channel decoding and SI generation in a flexible manner. It allows users to choose a means of minimizing the computational complexity of the DVC decoder according to their preferences and the device's resource limitations. An experiment shows that the proposed method increases decoding speeds by up to 25 times.