1-8hit |
Sang Hyuk PARK Sangwoo KANG Seongjae CHO Dong-Seup LEE Jung Han LEE Hong-Seon YANG Kwon-Chil KANG Joung-Eob LEE Jong Duk LEE Byung-Gook PARK
A Recessed-Channel Dual-Gate Single Electron Transistor (RCDG-SET) which has the possibility of room temperature operation is proposed. Side gates of a RCDG-SET form electrical tunneling barriers around a recessed channel, which is newly introduced. Not only gate but also a recessed channel is self aligned to source and drain. Characteristics of a RCDG-SET are compared with those of previous DG-SETs through device simulation (SILVACO). Due to a recessed channel and a self aligned structure, MOSFET current which causes low Peak-to-Valley Current Ratio (PVCR) is suppressed. This property of a RCDG-SET is expected to contribute for room temperature operation.
Seongjae CHO Il Han PARK Jung Hoon LEE Jang-Gn YUN Doo-Hyun KIM Jong Duk LEE Hyungcheol SHIN Byung-Gook PARK
Efforts have been devoted to maximizing memory array densities. However, as the devices are scaled down in dimension and getting closer to each other, electrical interference phenomena among devices become more prominent. Various features of 3-D memory devices are proposed for the enhancement of memory array density. In this study, we mention 3-D NAND flash memory device having pillar structure as the representative, and investigate the paired cell interference (PCI) which inevitably occurs in the read operation for 3-D memory devices in this feature. Furthermore, criteria for setting up the read operation bias schemes are also examined in existence with PCI.
Doo-Hyun KIM Il Han PARK Seongjae CHO Jong Duk LEE Hyungcheol SHIN Byung-Gook PARK
This paper presents a detailed study of the retention characteristics in scaled multi-bit SONOS flash memories. By calculating the oxide field and tunneling currents, we evaluate the charge trapping mechanism. We calculate transient retention dynamics with the ONO fields, trapped charge, and tunneling currents. All the parameters were obtained by physics-based equations and without any fitting parameters or optimization steps. The results can be used with nanoscale nonvolatile memory. This modeling accounts for the VT shift as a function of trapped charge density, time, silicon fin thickness and type of trapped charge, and can be used for optimizing the ONO geometry and parameters for maximum performance.
Jongwook JEON Ickhyun SONG Jong Duk LEE Byung-Gook PARK Hyungcheol SHIN
In this paper, a compact channel thermal noise model for short-channel MOSFETs is presented and applied to the radio frequency integrated circuit (RFIC) design. Based on the analysis of the relationship among different short-channel effects such as velocity saturation effect (VSE), channel-length modulation (CLM), and carrier heating effect (CHE), the compact model for the channel thermal noise was analytically derived as a simple form. In order to simulate MOSFET's noise characteristics in circuit simulators, an appropriate methodology is proposed. The used compact noise model is verified by comparing simulated results to the measured data at device and circuit level by using 65 nm and 130 nm CMOS technologies, respectively.
Jong Pil KIM Woo Young CHOI Jae Young SONG Seongjae CHO Sang Wan KIM Jong Duk LEE Byung-Gook PARK
A novel asymmetric MOSFET with no LDD on the source side is simulated on bulk-Si using a device simulator (SILVACO). In order to overcome the problems of the conventional asymmetric process, a novel asymmetric MOSFET using mesa structure and sidewall spacer gate is proposed which provides self-alignment process, aggressive scaling, and uniformity. First of all, we have simulated to compare the characteristics between asymmetric and symmetric MOSFETs. Basically, both asymmetric and symmetric MOSFETs have an n-type channel (25-nm) and the same physical parameters. When we compare this with the 25-nm symmetric MOSFET, the proposed asymmetric MOSFET shows better device performances.
Jang Gn YUN Il Han PARK Seongjae CHO Jung Hoon LEE Doo-Hyun KIM Gil Sung LEE Yoon KIM Jong Duk LEE Byung-Gook PARK
In this paper, characteristics of the 2-bit recessed channel memory with lifted-charge trapping nodes are investigated. The length between the charge trapping nodes through channel, which is defined as the effective memory node length (Meff), is extended by lifting up them. The dependence of VTH window and short channel effect (SCE) on the recessed depth is analyzed. Improvement of short channel effect is achieved because the recessed channel structure increases the effective channel length (Leff). Moreover, this device shows highly scalable memory characteristics without suffering from the bottom-side effect (BSE).
Seongjae CHO Jung Hoon LEE Gil Sung LEE Jong Duk LEE Hyungcheol SHIN Byung-Gook PARK
Recently, various types of 3-D nonvolatile memory (NVM) devices have been researched to improve the integration density [1]-[3]. The NVM device of pillar structure can be considered as one of the candidates [4],[5]. When this is applied to a NAND flash memory array, bottom end of the device channel is connected to the bulk silicon. In this case, the current in vertical direction varies depending on the thickness of silicon channel. When the channel is thick, the difference of saturation current levels between on/off states of individual device is more obvious. On the other hand, when the channel is thin, the on/off current increases simultaneously whereas the saturation currents do not differ very much. The reason is that the channel potential barrier seen by drain electrons is lowered by read voltage on the opposite sidewall control gate. This phenomenon that can occur in 3-D structure devices due to proximity can be called gate-induced barrier lowering (GIBL). In this work, the dependence of GIBL on silicon channel thickness is investigated, which will be the criteria in the implementation of reliable ultra-small NVM devices.
Yoon KIM Seongjae CHO Gil Sung LEE Il Han PARK Jong Duk LEE Hyungcheol SHIN Byung-Gook PARK
We propose a 3-dimensional terraced NAND flash memory. It has a vertical channel so it is possible to make a long enough channel in 1F2 size. And it has 3-dimensional structure whose channel is connected vertically along with two stairs. So we can obtain high density as in the stacked array structure, without silicon stacking process. We can make NAND flash memory with 3F2 cell size. Using SILVACO ATLAS simulation, we study terraced NAND flash memory characteristics such as program, erase, and read. Also, its fabrication method is proposed.