The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

2621-2640hit(42807hit)

  • Deterministic Supervisors for Bisimilarity Control of Partially Observed Nondeterministic Discrete Event Systems with Deterministic Specifications

    Kohei SHIMATANI  Shigemasa TAKAI  

     
    PAPER

      Vol:
    E104-A No:2
      Page(s):
    438-446

    We consider the bisimilarity control problem for partially observed nondeterministic discrete event systems with deterministic specifications. This problem requires us to synthesize a supervisor that achieves bisimulation equivalence of the supervised system and the deterministic specification under partial observation. We present necessary and sufficient conditions for the existence of such a deterministic supervisor and show that these conditions can be verified polynomially.

  • Learning Rule for a Quantum Neural Network Inspired by Hebbian Learning

    Yoshihiro OSAKABE  Shigeo SATO  Hisanao AKIMA  Mitsunaga KINJO  Masao SAKURABA  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2020/10/30
      Vol:
    E104-D No:2
      Page(s):
    237-245

    Utilizing the enormous potential of quantum computers requires new and practical quantum algorithms. Motivated by the success of machine learning, we investigate the fusion of neural and quantum computing, and propose a learning method for a quantum neural network inspired by the Hebb rule. Based on an analogy between neuron-neuron interactions and qubit-qubit interactions, the proposed quantum learning rule successfully changes the coupling strengths between qubits according to training data. To evaluate the effectiveness and practical use of the method, we apply it to the memorization process of a neuro-inspired quantum associative memory model. Our numerical simulation results indicate that the proposed quantum versions of the Hebb and anti-Hebb rules improve the learning performance. Furthermore, we confirm that the probability of retrieving a target pattern from multiple learned patterns is sufficiently high.

  • Generation Method of Two-Dimensional Optical ZCZ Sequences with High Correlation Peak Value

    Takahiro MATSUMOTO  Hideyuki TORII  Yuta IDA  Shinya MATSUFUJI  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E104-A No:2
      Page(s):
    417-421

    In this paper, we propose new generation methods of two-dimensional (2D) optical zero-correlation zone (ZCZ) sequences with the high peak autocorrelation amplitude. The 2D optical ZCZ sequence consists of a pair of a binary sequence which takes 1 or 0 and a bi-phase sequence which takes 1 or -1, and has a zero-correlation zone in the two-dimensional correlation function. Because of these properties, the 2D optical ZCZ sequence is suitable for optical code-division multiple access (OCDMA) system using an LED array having a plurality of light-emitting elements arranged in a lattice pattern. The OCDMA system using the 2D optical ZCZ sequence can be increased the data rate and can be suppressed interference by the light of adjacent LEDs. By using the proposed generation methods, we can improve the peak autocorrelation amplitude of the sequence. This means that the BER performance of the OCDMA system using the sequence can be improved.

  • An Empirical Evaluation of Coverage Criteria for FBD Simulation Using Mutation Analysis

    Dong-Ah LEE  Eui-Sub KIM  Junbeom YOO  

     
    LETTER-Software Engineering

      Pubricized:
    2020/10/09
      Vol:
    E104-D No:1
      Page(s):
    208-211

    Two structural coverage criteria, toggle coverage and modified condition/decision coverage, for FBD (Function Block Diagram) simulation are proposed in the previous study. This paper empirically evaluates how effective the coverage criteria are to detect faults in an FBD program using the mutation analysis.

  • FOREWORD Open Access

    Minoru OKADA  

     
    FOREWORD

      Vol:
    E104-A No:1
      Page(s):
    226-226
  • FOREWORD Open Access

    Shiho MORIAI  

     
    FOREWORD

      Vol:
    E104-A No:1
      Page(s):
    1-1
  • A Novel Robust Carrier Activation Selection Scheme for OFDM-IM System with Power Allocation

    Gui-geng LU  Hai-bin WAN  Tuan-fa QIN  Shu-ping DANG  Zheng-qiang WANG  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2020/10/02
      Vol:
    E104-D No:1
      Page(s):
    203-207

    In this paper, we investigate the subcarriers combination selection and the subcarriers activation of OFDM-IM system. Firstly, we propose an algorithm to solve the problem of subcarriers combination selection based on the transmission rate and diversity gain. Secondly, we ropose a more concise algorithm to solve the problem of power allocation and carrier combination activation probability under this combination to improve system capacity. Finally, we verify the robustness of the algorithm and the superiority of the system scheme in the block error rate (BLER) and system capacity by numerical results.

  • A Phase Retrieval Method with Probe-Positioning Error Compensation for Phaseless Near-Field Measurements

    Yoshiki SUGIMOTO  Hiroyuki ARAI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/07/14
      Vol:
    E104-B No:1
      Page(s):
    55-63

    The phaseless antenna measurement technique is advantageous for high-frequency near-field measurements in which the uncertainty of the measured phase is a problem. In the phaseless measurement, which is expected to be used in the frequency band with a short wavelength, a slight positional deviation error of the probe greatly deteriorates the measurement result. This paper proposes a phase retrieval method that can compensate the measurement errors caused by misalignment of a probe and its jig. And this paper proposes a far-field estimation method by phase resurrection that incorporated the compensation techniques. We find that the positioning errors are due to the random errors occurring at each measurement point because of minute vibrations of the probe; in addition, we determine that the stationary depth errors occurring at each measurement surface as errors caused by improper setting of the probe jig. The random positioning error is eliminated by adding a low-pass filter in wavenumber space, and the depth positioning error is iteratively compensated on the basis of the relative residual obtained in each plane. The validity of the proposed method is demonstrated by estimating the far-field patterns using the results from numerical simulations, and is also demonstrated using measurement data with probe-positioning error. The proposed method can reduce the probe-positioning error and improve the far-field estimation accuracy by more over than 10 dB.

  • Robust Control of a Class of Nonlinear Systems in Presence of Uncertain Time-Varying Parameters Associated with Diagonal Terms via Output Feedback

    Sang-Young OH  Ho-Lim CHOI  

     
    PAPER-Systems and Control

      Pubricized:
    2020/07/08
      Vol:
    E104-A No:1
      Page(s):
    263-274

    In this paper, we propose a robust output feedback control method for nonlinear systems with uncertain time-varying parameters associated with diagonal terms and there are additional external disturbances. First, we provide a new practical guidance of obtaining a compact set which contains the allowed time-varying parameters by utilizing a Lyapunov equation and matrix inequalities. Then, we show that all system states and observer errors of the controlled system remain bounded by the proposed controller. Moreover, we show that the ultimate bounds of some system states and observer errors can be made (arbitrarily) small by adjusting a gain-scaling factor depending on the system nonlinearity. With an application example, we illustrate the effectiveness of our control scheme over the existing one.

  • Filter Design for Full-Duplex Multiuser Systems Based on Single-Carrier Transmission in Frequency-Selective Channels

    Kyohei AMANO  Teruyuki MIYAJIMA  Yoshiki SUGITANI  

     
    PAPER

      Vol:
    E104-A No:1
      Page(s):
    235-242

    In this paper, we consider interference suppression for a full-duplex (FD) multiuser system based on single-carrier transmission in frequency-selective channels where a FD base-station (BS) simultaneously communicates with half-duplex (HD) uplink and downlink mobile users. We propose a design method for time-domain filtering where the filters in the BS transmitter suppress inter-symbol interference (ISI) and downlink inter-user interference (IUI); those in the BS receiver, self-interference, ISI, and uplink IUI; and those in the downlink mobile users, co-channel interference (CCI) without the channel state information of the CCI channels. Simulation results indicate that the FD system based on the proposed method outperforms the conventional HD system and FD system based on multicarrier transmission.

  • Optimal Construction of Access Rate to Superior Channel in Rendezvous Channel Based on Channel-Occupancy Ratio

    Yuki NISHIO  Osamu TAKYU  Hayato SOYA  Keiichiro SHIRAI  Mai OHTA  Takeo FUJII  

     
    PAPER

      Vol:
    E104-A No:1
      Page(s):
    243-252

    Dynamic spectrum access (DSA) exploits vacant frequency resources via distributed wireless access. The two nodes of DSA, master and slave, access different channels, and thus, cannot communicate with each other. To compensate for the access channel mismatch between the two nodes, a rendezvous channel, which exchanges control signals between two nodes, has been considered. The rendezvous channel based on channel-occupancy ratio (COR) adaptively constructs the channel in accordance with the channel occupancy of other systems, and both a high-speed rendezvous channel and high usage efficiency of the frequency resource are accomplished owing to exploitation of the vacant channel. In the rendezvous channel based on COR, the master and slave recognize the channel with minimum measured COR as the superior channel. As the master sends the control signals through the superior channel recognized by the master, the slave accesses to the superior channel recognized by the slave with higher access rate than to the other channels. As a result, the slave can receive the control signals with highly probability and thus high speed rendezvous channel is achieved. If the master and the slave recognize the different channel as the superior channel, the access rate to the other channel should be larger. This is because the slave obtains the opportunity of receiving the control signals through the different channel from the superior channel recognized by slave and thus the high probability that the slave can receive the control signals is maintained. Therefore, the access rate of slave should be constructed in accordance with the recognition of superior channel by master and slave. In this paper, the access rate of slave to the superior channel is optimally constructed using the analyzed probability of completion of rendezvous channel. The analysis of the probability of completion of rendezvous channel includes the recognition of superior channel by master and slave. Even if the master and the slave recognize the different channel, the constructed access rate of slave can maintain the high speed rendezvous channel. From the theoretical analysis and computer simulation, the rendezvous channel based on COR with the optimal access rate to the channel with the lowest COR achieves reduced time for the rendezvous channel.

  • Robust Fractional Lower Order Correntropy Algorithm for DOA Estimation in Impulsive Noise Environments

    Quan TIAN  Tianshuang QIU  Jitong MA  Jingchun LI  Rong LI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/06/29
      Vol:
    E104-B No:1
      Page(s):
    35-48

    In array signal processing, many methods of handling cases of impulsive noise with an alpha-stable distribution have been studied. By introducing correntropy with a robust statistical property, this paper proposes a novel fractional lower order correntropy (FLOCR) method. The FLOCR-based estimator for array outputs is defined and applied with multiple signal classification (MUSIC) to estimate the direction of arrival (DOA) in alpha-stable distributed noise environments. Comprehensive Monte Carlo simulation results demonstrate that FLOCR-MUSIC outperforms existing algorithms in terms of root mean square error (RMSE) and the probability of resolution, especially in the presence of highly impulsive noise.

  • Low Profile High-Efficiency Transmitarray Antenna Based on Hybrid Frequency Selective Surface

    Chang-Hyun LEE  Jeong-Hae LEE  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2020/07/17
      Vol:
    E104-B No:1
      Page(s):
    49-54

    This paper presents a low profile high-efficiency transmitarray (TA) antenna based on a hybrid frequency selective surface (FSS). The hybrid FSS consists of two types of unit cells that have different incident angles and TE/TM polarization. This design minimizes the performance degradation caused by the oblique incident angle when designing a low profile TA antenna. In addition, the set of transmission phases to minimize transmission loss is selected by employing the optimal output phase reference. To verify its feasibility, a low profile TA (focal length/diameter of FSS =0.24) antenna that employs a unit patch antenna with a low gain and wide beamwidth as a feed antenna without an additional structure is designed. The simulated and measured results are in good agreement. In particular, the high simulated and measured aperture efficiencies of 42.7% and 41.9%, respectively, are obtained at 10GHz, respectively.

  • MLSE Based on Phase Difference FSM for GFSK Signals

    Kyu-Man LEE  Taek-Won KWON  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2020/07/27
      Vol:
    E104-A No:1
      Page(s):
    328-331

    Bluetooth is a common wireless technology that is widely used as a connection medium between various consumer electronic devices. The receivers mostly adopt the Viterbi algorithm to improve a bit error rate performance but are hampered by heavy hardware complexity and computational load due to a coherent detection and searching for the unknown modulation index. To address these challenges, a non-coherent maximum likelihood estimation detector with an eight-state Viterbi is proposed for Gaussian frequency-shift keying symbol detection against an irrational modulation index, without any knowledge of prior information or assumptions. The simulation results showed an improvement in the performance compared to other ideal approaches.

  • New Iterated RC4 Key Correlations and their Application to Plaintext Recovery on WPA-TKIP

    Ryoma ITO  Atsuko MIYAJI  

     
    PAPER

      Vol:
    E104-A No:1
      Page(s):
    190-202

    This paper presents new key correlations of the keystream bytes generated from RC4 and their application to plaintext recovery on WPA-TKIP. We first observe new key correlations between two bytes of the RC4 key pairs and a keystream byte in each round, and provide their proofs. We refer to these correlations as iterated RC4 key correlations since two bytes of the RC4 key pairs are iterated every 16 rounds. We then extend the existing attacks by Isobe et al. at FSE 2013 and AlFardan et al. at USENIX Security 2013, 0and finally propose an efficient attack on WPA-TKIP. We refer to the proposed attack as chosen plaintext recovery attack (CPRA) since it chooses the best approach for each byte from a variety of the existing attacks. In order to recover the first 257 bytes of a plaintext on WPA-TKIP with success probability of at least 90%, CPRA requires approximately 230 ciphertexts, which are approximately half the number of ciphertexts for the existing attack by Paterson et al. at FSE 2014.

  • Generation and Detection of Media Clones Open Access

    Isao ECHIZEN  Noboru BABAGUCHI  Junichi YAMAGISHI  Naoko NITTA  Yuta NAKASHIMA  Kazuaki NAKAMURA  Kazuhiro KONO  Fuming FANG  Seiko MYOJIN  Zhenzhong KUANG  Huy H. NGUYEN  Ngoc-Dung T. TIEU  

     
    INVITED PAPER

      Pubricized:
    2020/10/19
      Vol:
    E104-D No:1
      Page(s):
    12-23

    With the spread of high-performance sensors and social network services (SNS) and the remarkable advances in machine learning technologies, fake media such as fake videos, spoofed voices, and fake reviews that are generated using high-quality learning data and are very close to the real thing are causing serious social problems. We launched a research project, the Media Clone (MC) project, to protect receivers of replicas of real media called media clones (MCs) skillfully fabricated by means of media processing technologies. Our aim is to achieve a communication system that can defend against MC attacks and help ensure safe and reliable communication. This paper describes the results of research in two of the five themes in the MC project: 1) verification of the capability of generating various types of media clones such as audio, visual, and text derived from fake information and 2) realization of a protection shield for media clones' attacks by recognizing them.

  • Singleton-Type Optimal LRCs with Minimum Distance 3 and 4 from Projective Code

    Qiang FU  Ruihu LI  Luobin GUO  Gang CHEN  

     
    LETTER-Coding Theory

      Vol:
    E104-A No:1
      Page(s):
    319-323

    Locally repairable codes (LRCs) are implemented in distributed storage systems (DSSs) due to their low repair overhead. The locality of an LRC is the number of nodes in DSSs that participate in the repair of failed nodes, which characterizes the repair cost. An LRC is called optimal if its minimum distance attains the Singleton-type upper bound [1]. In this letter, optimal LRCs are considered. Using the concept of projective code in projective space PG(k, q) and shortening strategy, LRCs with d=3 are proposed. Meantime, derived from an ovoid [q2+1, 4, q2]q code (responding to a maximal (q2+1)-cap in PG(3, q)), optimal LRCs over Fq with d=4 are constructed.

  • Virtual Vault: A Practical Leakage Resilient Scheme Using Space-Hard Ciphers

    Yuji KOIKE  Takuya HAYASHI  Jun KURIHARA  Takanori ISOBE  

     
    PAPER

      Vol:
    E104-A No:1
      Page(s):
    182-189

    Due to the legal reform on the protection of personal information in US/Japan and the enforcement of the General Data Protection Regulation (GDPR) in Europe, service providers are obliged to more securely manage the sensitive data stored in their server. In order to protect this kind of data, they generally employ a cryptographic encryption scheme and secure key management schemes such as a Hardware Security Module (HSM) and Trusted Platform Module (TPM). In this paper, we take a different approach based on the space-hard cipher. The space-hard cipher has an interesting property called the space hardness. Space hardness guarantees sufficient security against the adversary who gains a part of key data, e.g., 1/4 of key data. Combined with a simple network monitoring technique, we develop a practical leakage resilient scheme Virtual Vault, which is secure against the snapshot adversary who has full access to the memory in the server for a short period. Importantly, Virtual Vault is deployable by only a low-price device for network monitoring, e.g. L2 switch, and software of space-hard ciphers and packet analyzer, while typical solutions require a dedicated hardware for secure key managements such as HSM and TPM. Thus, Virtual Vault is easily added on the existing servers which do not have such dedicated hardware.

  • Further Results on Efficient Implementations of Block Cipher Linear Layers

    Subhadeep BANIK  Yuki FUNABIKI  Takanori ISOBE  

     
    PAPER

      Vol:
    E104-A No:1
      Page(s):
    213-225

    At the FSE conference of ToSC 2018, Kranz et al. presented their results on shortest linear programs for the linear layers of several well known block ciphers in literature. Shortest linear programs are essentially the minimum number of 2-input xor gates required to completely describe a linear system of equations. In the above paper the authors showed that the commonly used metrics like d-xor/s-xor count that are used to judge the “lightweightedness” do not represent the minimum number of xor gates required to describe a given MDS matrix. In fact they used heuristic based algorithms of Boyar-Peralta and Paar to find implementations of MDS matrices with even fewer xor gates than was previously known. They proved that the AES mixcolumn matrix can be implemented with as little as 97 xor gates. In this paper we show that the values reported in the above paper are not optimal. By suitably including random bits in the instances of the above algorithms we can achieve implementations of almost all matrices with lesser number of gates than were reported in the above paper. As a result we report an implementation of the AES mixcolumn matrix that uses only 95 xor gates. In FSE conference of ToSC 2019, Li et al. had tweaked the Boyar-Peralta algorithm to get low depth implementations of many matrices. We show that by introducing randomness in the tweaked algorithm, it is again possible to get low depth implementations with lesser number of gates than the above paper. As a result, we report a depth implementation of the AES mixcolumn matrix that uses only 103 xor gates, which is 2 gates less than the previous implementation. In the second part of the paper, we observe that most standard cell libraries contain both 2 and 3-input xor gates, with the silicon area of the 3-input xor gate being smaller than the sum of the areas of two 2-input xor gates. Hence when linear circuits are synthesized by logic compilers (with specific instructions to optimize for area), most of them would return a solution circuit containing both 2 and 3-input xor gates. Thus from a practical point of view, reducing circuit size in presence of these gates is no longer equivalent to solving the shortest linear program. In this paper we show that by adopting a graph based heuristic it is possible to convert a circuit constructed with 2-input xor gates to another functionally equivalent circuit that utilizes both 2 and 3-input xor gates and occupies less hardware area. As a result we obtain more lightweight implementations of all the matrices listed in the ToSC paper.

  • AdaLSH: Adaptive LSH for Solving c-Approximate Maximum Inner Product Search Problem

    Kejing LU  Mineichi KUDO  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2020/10/13
      Vol:
    E104-D No:1
      Page(s):
    138-145

    Maximum inner product search (MIPS) problem has gained much attention in a wide range of applications. In order to overcome the curse of dimensionality in high-dimensional spaces, most of existing methods first transform the MIPS problem into another approximate nearest neighbor search (ANNS) problem and then solve it by Locality Sensitive Hashing (LSH). However, due to the error incurred by the transmission and incomprehensive search strategies, these methods suffer from low precision and have loose probability guarantees. In this paper, we propose a novel search method named Adaptive-LSH (AdaLSH) to solve MIPS problem more efficiently and more precisely. AdaLSH examines objects in the descending order of both norms and (the probably correctly estimated) cosine angles with a query object in support of LSH with extendable windows. Such extendable windows bring not only efficiency in searching but also the probability guarantee of finding exact or approximate MIP objects. AdaLSH gives a better probability guarantee of success than those in conventional algorithms, bringing less running times on various datasets compared with them. In addition, AdaLSH can even support exact MIPS with probability guarantee.

2621-2640hit(42807hit)