The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

2641-2660hit(42807hit)

  • On the Security of Keyed-Homomorphic PKE: Preventing Key Recovery Attacks and Ciphertext Validity Attacks Open Access

    Keita EMURA  

     
    LETTER-Cryptography and Information Security

      Pubricized:
    2020/07/08
      Vol:
    E104-A No:1
      Page(s):
    310-314

    In this short note, we formally show that Keyed-Homomorphic Public Key Encryption (KH-PKE) is secure against key recovery attacks and ciphertext validity attacks that have been introduced as chosen-ciphertext attacks for homomorphic encryption.

  • Optimal Planning of Emergency Communication Network Using Deep Reinforcement Learning Open Access

    Changsheng YIN  Ruopeng YANG  Wei ZHU  Xiaofei ZOU  Junda ZHANG  

     
    PAPER-Network

      Pubricized:
    2020/06/29
      Vol:
    E104-B No:1
      Page(s):
    20-26

    Aiming at the problems of traditional algorithms that require high prior knowledge and weak timeliness, this paper proposes an emergency communication network topology planning method based on deep reinforcement learning. Based on the characteristics of the emergency communication network, and drawing on chess, we map the node layout and topology planning problems in the network planning to chess game problems; The two factors of network coverage and connectivity are considered to construct the evaluation criteria for network planning; The method of combining Monte Carlo tree search and self-game is used to realize network planning sample data generation, and the network planning strategy network and value network structure based on residual network are designed. On this basis, the model was constructed and trained based on Tensorflow library. Simulation results show that the proposed planning method can effectively implement intelligent planning of network topology, and has excellent timeliness and feasibility.

  • Efficient Algorithms for Sign Detection in RNS Using Approximate Reciprocals Open Access

    Shinichi KAWAMURA  Yuichi KOMANO  Hideo SHIMIZU  Saki OSUKA  Daisuke FUJIMOTO  Yuichi HAYASHI  Kentaro IMAFUKU  

     
    PAPER

      Vol:
    E104-A No:1
      Page(s):
    121-134

    The residue number system (RNS) is a method for representing an integer x as an n-tuple of its residues with respect to a given set of moduli. In RNS, addition, subtraction, and multiplication can be carried out by independent operations with respect to each modulus. Therefore, an n-fold speedup can be achieved by parallel processing. The main disadvantage of RNS is that we cannot efficiently compare the magnitude of two integers or determine the sign of an integer. Two general methods of comparison are to transform a number in RNS to a mixed-radix system or to a radix representation using the Chinese remainder theorem (CRT). We used the CRT to derive an equation approximating a value of x relative to M, the product of moduli. Then, we propose two algorithms that efficiently evaluate the equation and output a sign bit. The expected number of steps of these algorithms is of order n. The algorithms use a lookup table that is (n+3) times as large as M, which is reasonably small for most applications including cryptography.

  • An Extension Method to Construct M-Ary Sequences of Period 4N with Low Autocorrelation

    Xiaoping SHI  Tongjiang YAN  Xinmei HUANG  Qin YUE  

     
    LETTER-Communication Theory and Signals

      Pubricized:
    2020/07/17
      Vol:
    E104-A No:1
      Page(s):
    332-335

    Pseudorandom sequences with low autocorrelation magnitude play important roles in various environments. Let N be a prime with N=Mf+1, where M and f are positive integers. A new method to construct M-sequences of period 4N is given. We show that these new sequences have low autocorrelation magnitude.

  • Efficient Attribute-Based Signatures for Unbounded Arithmetic Branching Programs Open Access

    Pratish DATTA  Tatsuaki OKAMOTO  Katsuyuki TAKASHIMA  

     
    PAPER

      Vol:
    E104-A No:1
      Page(s):
    25-57

    This paper presents the first attribute-based signature (ABS) scheme in which the correspondence between signers and signatures is captured in an arithmetic model of computation. Specifically, we design a fully secure, i.e., adaptively unforgeable and perfectly signer-private ABS scheme for signing policies realizable by arithmetic branching programs (ABP), which are a quite expressive model of arithmetic computations. On a more positive note, the proposed scheme places no bound on the size and input length of the supported signing policy ABP's, and at the same time, supports the use of an input attribute for an arbitrary number of times inside a signing policy ABP, i.e., the so called unbounded multi-use of attributes. The size of our public parameters is constant with respect to the sizes of the signing attribute vectors and signing policies available in the system. The construction is built in (asymmetric) bilinear groups of prime order, and its unforgeability is derived in the standard model under (asymmetric version of) the well-studied decisional linear (DLIN) assumption coupled with the existence of standard collision resistant hash functions. Due to the use of the arithmetic model as opposed to the boolean one, our ABS scheme not only excels significantly over the existing state-of-the-art constructions in terms of concrete efficiency, but also achieves improved applicability in various practical scenarios. Our principal technical contributions are (a) extending the techniques of Okamoto and Takashima [PKC 2011, PKC 2013], which were originally developed in the context of boolean span programs, to the arithmetic setting; and (b) innovating new ideas to allow unbounded multi-use of attributes inside ABP's, which themselves are of unbounded size and input length.

  • Rethinking the Rotation Invariance of Local Convolutional Features for Content-Based Image Retrieval

    Longjiao ZHAO  Yu WANG  Jien KATO  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2020/10/14
      Vol:
    E104-D No:1
      Page(s):
    174-182

    Recently, local features computed using convolutional neural networks (CNNs) show good performance to image retrieval. The local convolutional features obtained by the CNNs (LC features) are designed to be translation invariant, however, they are inherently sensitive to rotation perturbations. This leads to miss-judgements in retrieval tasks. In this work, our objective is to enhance the robustness of LC features against image rotation. To do this, we conduct a thorough experimental evaluation of three candidate anti-rotation strategies (in-model data augmentation, in-model feature augmentation, and post-model feature augmentation), over two kinds of rotation attack (dataset attack and query attack). In the training procedure, we implement a data augmentation protocol and network augmentation method. In the test procedure, we develop a local transformed convolutional (LTC) feature extraction method, and evaluate it over different network configurations. We end up a series of good practices with steady quantitative supports, which lead to the best strategy for computing LC features with high rotation invariance in image retrieval.

  • A Compact RTD-Based Push-Push Oscillator Using a Symmetrical Spiral Inductor

    Kiwon LEE  Yongsik JEONG  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2020/07/09
      Vol:
    E104-C No:1
      Page(s):
    37-39

    In this paper, a compact microwave push-push oscillator based on a resonant tunneling diode (RTD) has been fabricated and demonstrated. A symmetrical spiral inductor structure has been used in order to reduce a chip area. The designed symmetric inductor is integrated into the InP-based RTD monolithic microwave integrated circuit (MMIC) technology. The circuit occupies a compact active area of 0.088 mm2 by employing symmetric inductor. The fabricated RTD oscillator shows an extremely low DC power consumption of 87 µW at an applied voltage of 0.47 V with good figure-of-merit (FOM) of -191 dBc/Hz at an oscillation frequency of 27 GHz. This is the first implementation as the RTD push-push oscillator with the symmetrical spiral inductor.

  • Stochastic Geometry Analysis of Wireless Backhaul Networks with Beamforming in Roadside Environments

    Yuxiang FU  Koji YAMAMOTO  Yusuke KODA  Takayuki NISHIO  Masahiro MORIKURA  Chun-hsiang HUANG  Yushi SHIRATO  Naoki KITA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2020/07/14
      Vol:
    E104-B No:1
      Page(s):
    118-127

    Stochastic geometry analysis of wireless backhaul networks with beamforming in roadside environments is provided. In particular, a new model to analyze antenna gains, interference, and coverage in roadside environments of wireless networks with Poisson point process deployment of BSs is proposed. The received interference from the BSs with wired backhaul (referred to as anchored BS or A-BS) and the coverage probability of a typical BS are analyzed under different approximations of the location of the serving A-BS and combined antenna gains. Considering the beamforming, the coverage probability based on the aggregate interference consisting of the direct interference from the A-BSs and reflected interference from the BSs with wireless backhaul is also derived.

  • Digital Watermarking Method for Printed Matters Using Deep Learning for Detecting Watermarked Areas

    Hiroyuki IMAGAWA  Motoi IWATA  Koichi KISE  

     
    PAPER

      Pubricized:
    2020/10/07
      Vol:
    E104-D No:1
      Page(s):
    34-42

    There are some technologies like QR codes to obtain digital information from printed matters. Digital watermarking is one of such techniques. Compared with other techniques, digital watermarking is suitable for adding information to images without spoiling their design. For such purposes, digital watermarking methods for printed matters using detection markers or image registration techniques for detecting watermarked areas are proposed. However, the detection markers themselves can damage the appearance such that the advantages of digital watermarking, which do not lose design, are not fully utilized. On the other hand, methods using image registration techniques are not able to work for non-registered images. In this paper, we propose a novel digital watermarking method using deep learning for the detection of watermarked areas instead of using detection markers or image registration. The proposed method introduces a semantic segmentation based on deep learning model for detecting watermarked areas from printed matters. We prepare two datasets for training the deep learning model. One is constituted of geometrically transformed non-watermarked and watermarked images. The number of images in this dataset is relatively large because the images can be generated based on image processing. This dataset is used for pre-training. The other is obtained from actually taken photographs including non-watermarked or watermarked printed matters. The number of this dataset is relatively small because taking the photographs requires a lot of effort and time. However, the existence of pre-training allows a fewer training images. This dataset is used for fine-tuning to improve robustness for print-cam attacks. In the experiments, we investigated the performance of our method by implementing it on smartphones. The experimental results show that our method can carry 96 bits of information with watermarked printed matters.

  • Privacy-Preserving Data Analysis: Providing Traceability without Big Brother

    Hiromi ARAI  Keita EMURA  Takuya HAYASHI  

     
    PAPER

      Vol:
    E104-A No:1
      Page(s):
    2-19

    Collecting and analyzing personal data is important in modern information applications. Though the privacy of data providers should be protected, the need to track certain data providers often arises, such as tracing specific patients or adversarial users. Thus, tracking only specific persons without revealing normal users' identities is quite important for operating information systems using personal data. It is difficult to know in advance the rules for specifying the necessity of tracking since the rules are derived by the analysis of collected data. Thus, it would be useful to provide a general way that can employ any data analysis method regardless of the type of data and the nature of the rules. In this paper, we propose a privacy-preserving data analysis construction that allows an authority to detect specific users while other honest users are kept anonymous. By using the cryptographic techniques of group signatures with message-dependent opening (GS-MDO) and public key encryption with non-interactive opening (PKENO), we provide a correspondence table that links a user and data in a secure way, and we can employ any anonymization technique and data analysis method. It is particularly worth noting that no “big brother” exists, meaning that no single entity can identify users who do not provide anomaly data, while bad behaviors are always traceable. We show the result of implementing our construction. Briefly, the overhead of our construction is on the order of 10 ms for a single thread. We also confirm the efficiency of our construction by using a real-world dataset.

  • Iterative Carrier Frequency Offset Estimation with Independent Component Analysis in BLE Systems

    Masahiro TAKIGAWA  Takumi TAKAHASHI  Shinsuke IBI  Seiichi SAMPEI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/07/14
      Vol:
    E104-B No:1
      Page(s):
    88-98

    This paper proposes iterative carrier frequency offset (CFO) compensation for spatially multiplexed Bluetooth Low Energy (BLE) signals using independent component analysis (ICA). We apply spatial division multiple access (SDMA) to BLE system to deal with massive number of connection requests of BLE devices expected in the future. According to specifications, each BLE peripheral device is assumed to have CFO of up to 150 [kHz] due to hardware impairments. ICA can resolve spatially multiplexed signals even if they include independent CFO. After the ICA separation, the proposed scheme compensates for the CFO. However, the length of the BLE packet preamble is not long enough to obtain accurate CFO estimates. In order to accurately conduct the CFO compensation using the equivalent of a long pilot signal, preamble and a part of estimated data in the previous process are utilized. In addition, we reveal the fact that the independent CFO of each peripheral improves the capability of ICA blind separation. The results confirm that the proposed scheme can effectively compensate for CFO in the range of up to 150[kHz], which is defined as the acceptable value in the BLE specification.

  • A Novel Multi-Knowledge Distillation Approach

    Lianqiang LI  Kangbo SUN  Jie ZHU  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/10/19
      Vol:
    E104-D No:1
      Page(s):
    216-219

    Knowledge distillation approaches can transfer information from a large network (teacher network) to a small network (student network) to compress and accelerate deep neural networks. This paper proposes a novel knowledge distillation approach called multi-knowledge distillation (MKD). MKD consists of two stages. In the first stage, it employs autoencoders to learn compact and precise representations of the feature maps (FM) from the teacher network and the student network, these representations can be treated as the essential of the FM, i.e., EFM. In the second stage, MKD utilizes multiple kinds of knowledge, i.e., the magnitude of individual sample's EFM and the similarity relationships among several samples' EFM to enhance the generalization ability of the student network. Compared with previous approaches that employ FM or the handcrafted features from FM, the EFM learned from autoencoders can be transferred more efficiently and reliably. Furthermore, the rich information provided by the multiple kinds of knowledge guarantees the student network to mimic the teacher network as closely as possible. Experimental results also show that MKD is superior to the-state-of-arts.

  • Unsupervised Deep Embedded Hashing for Large-Scale Image Retrieval Open Access

    Huanmin WANG  

     
    LETTER-Image

      Pubricized:
    2020/07/14
      Vol:
    E104-A No:1
      Page(s):
    343-346

    Hashing methods have proven to be effective algorithm for image retrieval. However, learning discriminative hash codes is challenging for unsupervised models. In this paper, we propose a novel distinguishable image retrieval framework, named Unsupervised Deep Embedded Hashing (UDEH), to recursively learn discriminative clustering through soft clustering models and generate highly similar binary codes. We reduce the data dimension by auto-encoder and apply binary constraint loss to reduce quantization error. UDEH can be jointly optimized by standard stochastic gradient descent (SGD) in the embedd layer. We conducted a comprehensive experiment on two popular datasets.

  • Integration of Experts' and Beginners' Machine Operation Experiences to Obtain a Detailed Task Model

    Longfei CHEN  Yuichi NAKAMURA  Kazuaki KONDO  Dima DAMEN  Walterio MAYOL-CUEVAS  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2020/10/02
      Vol:
    E104-D No:1
      Page(s):
    152-161

    We propose a novel framework for integrating beginners' machine operational experiences with those of experts' to obtain a detailed task model. Beginners can provide valuable information for operation guidance and task design; for example, from the operations that are easy or difficult for them, the mistakes they make, and the strategy they tend to choose. However, beginners' experiences often vary widely and are difficult to integrate directly. Thus, we consider an operational experience as a sequence of hand-machine interactions at hotspots. Then, a few experts' experiences and a sufficient number of beginners' experiences are unified using two aggregation steps that align and integrate sequences of interactions. We applied our method to more than 40 experiences of a sewing task. The results demonstrate good potential for modeling and obtaining important properties of the task.

  • Presenting Walking Route for VR Zombie

    Nobuchika SAKATA  Kohei KANAMORI  Tomu TOMINAGA  Yoshinori HIJIKATA  Kensuke HARADA  Kiyoshi KIYOKAWA  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2020/09/30
      Vol:
    E104-D No:1
      Page(s):
    162-173

    The aim of this study is to calculate optimal walking routes in real space for users partaking in immersive virtual reality (VR) games without compromising their immersion. To this end, we propose a navigation system to automatically determine the route to be taken by a VR user to avoid collisions with surrounding obstacles. The proposed method is evaluated by simulating a real environment. It is verified to be capable of calculating and displaying walking routes to safely guide users to their destinations without compromising their VR immersion. In addition, while walking in real space while experiencing VR content, users can choose between 6-DoF (six degrees of freedom) and 3-DoF (three degrees of freedom). However, we expect users to prefer 3-DoF conditions, as they tend to walk longer while using VR content. In dynamic situations, when two pedestrians are added to a designated computer-generated real environment, it is necessary to calculate the walking route using moving body prediction and display the moving body in virtual space to preserve immersion.

  • Transition Dynamics of Multistable Tunnel-Diode Oscillator Used for Effective Amplitude Modulation

    Koichi NARAHARA  Koichi MAEZAWA  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Pubricized:
    2020/07/14
      Vol:
    E104-C No:1
      Page(s):
    40-43

    The transition dynamics of a multistable tunnel-diode oscillator is characterized for modulating amplitude of outputted oscillatory signal. The base oscillator possesses fixed-point and limit-cycle stable points for a unique bias voltage. Switching these two stable points by external signal can render an efficient method for modulation of output amplitude. The time required for state transition is expected to be dominated by the aftereffect of the limiting point. However, it is found that its influence decreases exponentially with respect to the amplitude of external signal. Herein, we first describe numerically the pulse generation scheme with the transition dynamics of the oscillator and then validate it with several time-domain measurements using a test circuit.

  • On a Relation between Knowledge-of-Exponent Assumptions and the DLog vs. CDH Question

    Firas KRAIEM  Shuji ISOBE  Eisuke KOIZUMI  Hiroki SHIZUYA  

     
    PAPER

      Vol:
    E104-A No:1
      Page(s):
    20-24

    Knowledge-of-exponent assumptions (KEAs) are a somewhat controversial but nevertheless commonly used type of cryptographic assumptions. While traditional cryptographic assumptions simply assert that certain tasks (like factoring integers or computing discrete logarithms) cannot be performed efficiently, KEAs assert that certain tasks can be performed efficiently, but only in certain ways. The controversy surrounding those assumptions is due to their non-falsifiability, which is due to the way this idea is formalised, and to the general idea that these assumptions are “strong”. Nevertheless, their relationship to existing assumptions has not received much attention thus far. In this paper, we show that the first KEA (KEA1), introduced by Damgård in 1991, implies that computing discrete logarithms is equivalent to solving the computational Diffie-Hellman (CDH) problem. Since showing this equivalence in the standard setting (i.e., without the assumption that KEA1 holds) is a longstanding open question, this indicates that KEA1 (and KEAs in general) are indeed quite strong assumptions.

  • Salient Chromagram Extraction Based on Trend Removal for Cover Song Identification

    Jin S. SEO  

     
    LETTER

      Pubricized:
    2020/10/19
      Vol:
    E104-D No:1
      Page(s):
    51-54

    This paper proposes a salient chromagram by removing local trend to improve cover song identification accuracy. The proposed salient chromagram emphasizes tonal contents of music, which are well-preserved between an original song and its cover version, while reducing the effects of timber difference. We apply the proposed salient chromagram to the sequence-alignment based cover song identification. Experiments on two cover song datasets confirm that the proposed salient chromagram improves the cover song identification accuracy.

  • Mitigation of Flash Crowd in Web Services By Providing Feedback Information to Users

    Harumasa TADA  Masayuki MURATA  Masaki AIDA  

     
    PAPER

      Pubricized:
    2020/09/18
      Vol:
    E104-D No:1
      Page(s):
    63-75

    The term “flash crowd” describes a situation in which a large number of users access a Web service simultaneously. Flash crowds, in particular, constitute a critical problem in e-commerce applications because of the potential for enormous economic damage as well as difficulty in management. Flash crowds can become more serious depending on users' behavior. When a flash crowd occurs, the delay in server response may cause users to retransmit their requests, thereby adding to the server load. In the present paper, we propose to use the psychological factors of the users for flash crowd mitigation. We aim to analyze changes in the user behavior by presenting feedback information. To evaluate the proposed method, we performed subject experiments and stress tests. Subject experiments showed that, by providing feedback information, the average number of request retransmissions decreased from 1.33 to 0.09, and the subjects that abandoned the service decreased from 81% to 0%. This confirmed that feedback information is effective in influencing user behavior in terms of abandonment and retransmission of requests. Stress tests showed that the average number of retransmissions decreased by 41%, and the proportion of abandonments decreased by 30%. These results revealed that the presentation of feedback information could mitigate the damage caused by flash crowds in real websites, although the effect is limited. The proposed method can be used in conjunction with conventional methods to handle flash crowds.

  • MILP-Aided Security Evaluation of Differential Attacks on KCipher-2

    Jin HOKI  Kosei SAKAMOTO  Fukang LIU  Kazuhiko MINEMATSU  Takanori ISOBE  

     
    PAPER

      Vol:
    E104-A No:1
      Page(s):
    203-212

    This paper investigates the security of KCipher-2 against differential attacks. We utilize an MILP-based method to evaluate the minimum number of active S-boxes in each round. We try to construct an accurate model to describe the 8-bit truncated difference propagation through the modular addition operation and the linear transformation of KCipher-2, respectively, which were omitted or simplified in the previous evaluation by Preneel et al. In our constructed model, the difference characteristics neglected in Preneel et al.'s evaluation can be taken into account and all valid differential characteristics can be covered. As a result, we reveal that the minimal number of active S-boxes is 25 over 15 rounds in the related IV setting and it is 17 over 24 rounds in the related IV-key setting. Therefore, this paper shows for the first time that KCipher-2 is secure against the related IV differential attack.

2641-2660hit(42807hit)