The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

6561-6580hit(42807hit)

  • Autoreducibility and Completeness for Partial Multivalued Functions

    Shuji ISOBE  Eisuke KOIZUMI  

     
    PAPER

      Pubricized:
    2016/12/21
      Vol:
    E100-D No:3
      Page(s):
    422-427

    In this paper, we investigate a relationship between many-one-like autoreducibility and completeness for classes of functions computed by polynomial-time nondeterministic Turing transducers. We prove two results. One is that any many-one complete function for these classes is metric many-one autoreducible. The other is that any strict metric many-one complete function for these classes is strict metric many-one autoreducible.

  • A Wideband Noise-Cancelling Receiver Front-End Using a Linearized Transconductor

    Duksoo KIM  Byungjoon KIM  Sangwook NAM  

     
    BRIEF PAPER-Microwaves, Millimeter-Waves

      Vol:
    E100-C No:3
      Page(s):
    340-343

    A wideband noise-cancelling receiver front-end is proposed in this brief. As a basic architecture, a low-noise transconductance amplifier, a passive mixer, and a transimpedance amplifier are employed to compose the wideband receiver. To achieve wideband input matching for the transconductor, a global feedback method is adopted. Since the wideband receiver has to minimize linearity degradation if a large blocker signal exists out-of-band, a linearization technique is applied for the transconductor circuit. The linearization cancels third-order intermodulation distortion components and increases linearity; however, the additional circuits used in linearization generate excessive noise. A noise-cancelling architecture that employs an auxiliary path cancels noise signals generated in the main path. The designed receiver front-end is fabricated using a 65-nm CMOS process. The receiver operates in the frequency range of 25 MHz-2 GHz with a gain of 49.7 dB. The in-band input-referred third-order intercept point is improved by 12.3 dB when the linearization is activated, demonstrating the effectiveness of the linearization technique.

  • FOREWORD Open Access

    Keiji TSUKADA  

     
    FOREWORD

      Vol:
    E100-C No:3
      Page(s):
    268-268
  • A Linear Time Algorithm for Finding a Minimum Spanning Tree with Non-Terminal Set VNT on Outerplanar Graphs

    Shin-ichi NAKAYAMA  Shigeru MASUYAMA  

     
    PAPER

      Pubricized:
    2016/12/21
      Vol:
    E100-D No:3
      Page(s):
    434-443

    Given a graph G=(V, E), where V and E are vertex and edge sets of G, and a subset VNT of vertices called a non-terminal set, the minimum spanning tree with a non-terminal set VNT, denoted by MSTNT, is a connected and acyclic spanning subgraph of G that contains all vertices of V with the minimum weight where each vertex in a non-terminal set is not a leaf. On general graphs, the problem of finding an MSTNT of G is NP-hard. We show that if G is an outerplanar graph then finding an MSTNT of G is linearly solvable with respect to the number of vertices.

  • Cache-Aware, In-Place Rotation Method for Texture-Based Volume Rendering

    Yuji MISAKI  Fumihiko INO  Kenichi HAGIHARA  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2016/12/12
      Vol:
    E100-D No:3
      Page(s):
    452-461

    We propose a cache-aware method to accelerate texture-based volume rendering on a graphics processing unit (GPU) that is compatible with the compute unified device architecture. The proposed method extends a previous method such that it can maximize the average rendering performance while rotating the viewing direction around a volume. To realize this, the proposed method performs in-place rotation of volume data, which rearranges the order of voxels to allow consecutive threads (warps) to refer to voxels with the minimum access strides. Experiments indicate that the proposed method replaces the worst texture cache (TC) hit rate of 42% with the best TC hit rate of 93% for a 10243-voxel volume. Thus, the average frame rate increases by a factor of 1.6 in the proposed method compared with that in the previous method. Although the overhead of in-place rotation slightly decreases the frame rate from 2.0 frames per second (fps) to 1.9 fps, this slowdown occurs only with a few viewing directions.

  • Enhanced Performance Using Precoding Scheme with Limited Feedback Information in the Heterogeneous Network

    Yong-Jun KIM  Hyoung-Kyu SONG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E100-A No:3
      Page(s):
    916-919

    For reliable communication, this letter proposes cooperative transmission scheme with spatial phase coding (SPC) in the edge area among base stations. The diversity method has the a difficulty in terms of the price and complexity in a base station with multiple antennas. Thus, this problem may be resolved by using the cooperative scheme among the base stations and the proposed scheme increases that uses economically resource by using less feedback bits. Especially, if the coverage of many base stations is overlapped, the performance of the proposed scheme is improved. From the simulation results, the proposed scheme has the better performance compared to the conventional scheme in heterogeneous network.

  • Easy-to-Deploy Wireless Mesh Network System with User Authentication and WLAN Roaming Features

    Tomo NIIZUMA  Hideaki GOTO  

     
    PAPER-Information Network

      Pubricized:
    2016/12/05
      Vol:
    E100-D No:3
      Page(s):
    511-519

    Wireless LAN (WLAN) roaming systems, such as eduroam, enable the mutual use of WLAN facilities among multiple organizations. As a consequence of the strong demand for WLAN roaming, it is utilized not only at universities and schools but also at the venues of large events such as concerts, conferences, and sports events. Moreover, it has also been reported that WLAN roaming is useful in areas afflicted by natural disasters. This paper presents a novel WLAN roaming system over Wireless Mesh Networks (WMNs) that is useful for the use cases shown above. The proposed system is based on two methods as follows: 1) Automatic authentication path generation method decreases the WLAN roaming system deployment costs including the wiring cost and configuration cost. Although the wiring cost can be reduced by using WMN technologies, some additional configurations are still required if we want to deploy a secure user authentication mechanism (e.g. IEEE 802.1X) on WLAN systems. In the proposed system, the Access Points (APs) can act as authenticators automatically using RadSec instead of RADIUS. Therefore, the network administrators can deploy 802.1X-based authentication systems over WMNs without additional configurations on-site. 2) Local authentication method makes the system deployable in times of natural disasters, in particular when the upper network is unavailable or some authentication servers or proxies are down. In the local authentication method, users and APs can be authenticated at the WMN by locally verifying the digital certificates as the authentication credentials.

  • Inferring User Consumption Preferences from Social Media

    Yang LI  Jing JIANG  Ting LIU  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2016/12/09
      Vol:
    E100-D No:3
      Page(s):
    537-545

    Social Media has already become a new arena of our lives and involved different aspects of our social presence. Users' personal information and activities on social media presumably reveal their personal interests, which offer great opportunities for many e-commerce applications. In this paper, we propose a principled latent variable model to infer user consumption preferences at the category level (e.g. inferring what categories of products a user would like to buy). Our model naturally links users' published content and following relations on microblogs with their consumption behaviors on e-commerce websites. Experimental results show our model outperforms the state-of-the-art methods significantly in inferring a new user's consumption preference. Our model can also learn meaningful consumption-specific topics automatically.

  • Blind Image Deconvolution Using Specified 2-D HPF for Feature Extraction and Conjugate Gradient Method in Frequency Domain

    Takanori FUJISAWA  Masaaki IKEHARA  

     
    PAPER-Image

      Vol:
    E100-A No:3
      Page(s):
    846-853

    Image deconvolution is the task to recover the image information that was lost by taking photos with blur. Especially, to perform image deconvolution without prior information about blur kernel, is called blind image deconvolution. This framework is seriously ill-posed and an additional operation is required such as extracting image features. Many blind deconvolution frameworks separate the problem into kernel estimation problem and deconvolution problem. In order to solve the kernel estimation problem, previous frameworks extract the image's salient features by preprocessing, such as edge extraction. The disadvantage of these frameworks is that the quality of the estimated kernel is influenced by the region with no salient edges. Moreover, the optimization in the previous frameworks requires iterative calculation of convolution, which takes a heavy computational cost. In this paper, we present a blind image deconvolution framework using a specified high-pass filter (HPF) for feature extraction to estimate a blur kernel. The HPF-based feature extraction properly weights the image's regions for the optimization problem. Therefore, our kernel estimation problem can estimate the kernel in the region with no salient edges. In addition, our approach accelerates both kernel estimation and deconvolution processes by utilizing a conjugate gradient method in a frequency domain. This method eliminates costly convolution operations from these processes and reduces the execution time. Evaluation for 20 test images shows our framework not only improves the quality of recovered images but also performs faster than conventional frameworks.

  • RPAH: A Moving Target Network Defense Mechanism Naturally Resists Reconnaissances and Attacks

    Yue-Bin LUO  Bao-Sheng WANG  Xiao-Feng WANG  Bo-Feng ZHANG  Wei HU  

     
    PAPER-Information Network

      Pubricized:
    2016/12/06
      Vol:
    E100-D No:3
      Page(s):
    496-510

    Network servers and applications commonly use static IP addresses and communication ports, making themselves easy targets for network reconnaissances and attacks. Moving target defense (MTD) is an innovatory and promising proactive defense technique. In this paper, we develop a novel MTD mechanism, called Random Port and Address Hopping (RPAH). The goal of RPAH is to hide network servers and applications and resist network reconnaissances and attacks by constantly changing their IP addresses and ports. In order to enhance the unpredictability, RPAH integrates source identity, service identity and temporal parameter in the hopping to provide three hopping frequencies, i.e., source hopping, service hopping and temporal hopping. RPAH provides high unpredictability and the maximum hopping diversities by introducing port and address demultiplexing mechanism, and provides a convenient attack detection mechanism with which the messages from attackers using invalid or inactive addresses/ports will be conveniently detected and denied. Our experiments and evaluation on campus network and PlanetLab show that RPAH is effective in resisting various network reconnaissance and attack models such as network scanning and worm propagation, while introducing an acceptable operation overhead.

  • An Efficient Image to Sound Mapping Method Using Speech Spectral Phase and Multi-Column Image

    Arata KAWAMURA  Hiro IGARASHI  Youji IIGUNI  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:3
      Page(s):
    893-895

    Image-to-sound mapping is a technique that transforms an image to a sound signal, which is subsequently treated as a sound spectrogram. In general, the transformed sound differs from a human speech signal. Herein an efficient image-to-sound mapping method, which provides an understandable speech signal without any training, is proposed. To synthesize such a speech signal, the proposed method utilizes a multi-column image and a speech spectral phase that is obtained from a long-time observation of the speech. The original image can be retrieved from the sound spectrogram of the synthesized speech signal. The synthesized speech and the reconstructed image qualities are evaluated using objective tests.

  • 2-D Angles of Arrival Estimation Utilizing Two-Step Weighted l1-Norm Penalty under Nested Coprime Array with Compressed Inter-Element Spacing

    Ye TIAN  Qiusheng LIAN  Kai LIU  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:3
      Page(s):
    896-901

    We consider the problem of two-dimensional (2-D) angles of arrival estimation using a newly proposed structure of nonuniform linear array, referred to as nested coprime array with compressed inter-element spacing (CACIS). By constructing a cross-correlation matrix of the received signals, the nested CACIS exhibits a larger number of degrees of freedom. A two-step weighted l1-norm penalty strategy is proposed to fully utilize these degrees of freedom, where the weight matrices are constructed by MUSIC spectrum function and the threshold function, respectively. The proposed method has several salient advantages over the compared method, including increased resolution and accuracy, estimating many more number of sources and suppressing spurious peaks efficiently. Simulation results validate the superiority of the proposed method.

  • Decision Feedback Equalizer with Frequency Domain Bidirectional Noise Prediction for MIMO-SCFDE System

    Zedong XIE  Xihong CHEN  Xiaopeng LIU  Lunsheng XUE  Yu ZHAO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/09/12
      Vol:
    E100-B No:3
      Page(s):
    433-439

    The impact of intersymbol interference (ISI) on single carrier frequency domain equalization with multiple input multiple output (MIMO-SCFDE) systems is severe. Most existing channel equalization methods fail to solve it completely. In this paper, given the disadvantages of the error propagation and the gap from matched filter bound (MFB), we creatively introduce a decision feedback equalizer with frequency-domain bidirectional noise prediction (DFE-FDBiNP) to tackle intersymbol interference (ISI) in MIMO-SCFDE systems. The equalizer has two-part equalizer, that is the normal mode and the time-reversal mode decision feedback equalization with noise prediction (DFE-NP). Equal-gain combining is used to realize a greatly simplified and low complexity diversity combining. Analysis and simulation results validate the improved performance of the proposed method in quasi-static frequency-selective fading MIMO channel for a typical urban environment.

  • Nonlinear Precoding for XOR Physical Layer Network Coding in Bi-Directional MIMO Relay Systems

    Lengchi CAO  Satoshi DENNO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/09/20
      Vol:
    E100-B No:3
      Page(s):
    440-448

    This paper proposes novel nonlinear precoding for XOR-physical layer network coding (XOR-PNC) to improve the performance of bi-directional MIMO relay systems. The proposed precoder comprises a pre-equalizer and a nonlinear filter, which we also propose in the paper. We theoretically analyze the performance of the XOR-PNC with the proposed nonlinear precoding. As a result, it is shown that the proposed pre-equalizer improves the distribution of the received signals at relays, while the nonlinear precoder not only improves the transmission power efficiency but also simplifies the receiver at the relays. The performance is confirmed by computer simulation. The XOR-PNC with the proposed precoding achieves almost the lower bound in BER performance, which is much better than the amplify-and-forward physical layer network coding (AF-PNC).

  • Analytical End-to-End PER Performance of Multi-Hop Cooperative Relaying and Its Experimental Verification

    Hidekazu MURATA  Makoto MIYAGOSHI  Yuji OISHI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/10/12
      Vol:
    E100-B No:3
      Page(s):
    449-455

    The end-to-end packet error rate (PER) performance of a multi-hop cooperative relaying system is discussed in this paper. In this system, the end-to-end PER performance improves with the number of hops under certain conditions. The PER performance of multi-hop cooperative networks is analyzed with the state transition technique. The theoretical analysis reveals that the PER performance can be kept almost constant, or even improved, as the number of hops is increased. Computer simulation results agree closely with the analysis results. Moreover, to confirm this performance characteristic in an actual setup, an in-lab experiment using a fading emulator was conducted. The experimental results confirm the theoretical end-to-end PER performance of this system.

  • Parametric Wind Velocity Vector Estimation Method for Single Doppler LIDAR Model

    Takayuki MASUO  Fang SHANG  Shouhei KIDERA  Tetsuo KIRIMOTO  Hiroshi SAKAMAKI  Nobuhiro SUZUKI  

     
    PAPER-Sensing

      Pubricized:
    2016/10/12
      Vol:
    E100-B No:3
      Page(s):
    465-472

    Doppler lidar (LIght Detection And Ranging) can provide accurate wind velocity vector estimates by processing the time delay and Doppler spectrum of received signals. This system is essential for real-time wind monitoring to assist aircraft taking off and landing. Considering the difficulty of calibration and cost, a single Doppler lidar model is more attractive and practical than a multiple lidar model. In general, it is impossible to estimate two or three dimensional wind vectors from a single lidar model without any prior information, because lidar directly observes only a 1-dimensional (radial direction) velocity component of wind. Although the conventional VAD (Velocity Azimuth Display) and VVP (Velocity Volume Processing) methods have been developed for single lidar model, both of them are inaccurate in the presence of local air turbulence. This paper proposes an accurate wind velocity estimation method based on a parametric approach using typical turbulence models such as tornado, micro-burst and gust front. The results from numerical simulation demonstrate that the proposed method remarkably enhances the accuracy for wind velocity estimation in the assumed modeled turbulence cases, compared with that obtained by the VAD or other conventional method.

  • Applying Razor Flip-Flops to SRAM Read Circuits

    Ushio JIMBO  Junji YAMADA  Ryota SHIOYA  Masahiro GOSHIMA  

     
    PAPER

      Vol:
    E100-C No:3
      Page(s):
    245-258

    Timing fault detection techniques address the problems caused by increased variations on a chip, especially with dynamic voltage and frequency scaling (DVFS). The Razor flip-flop (FF) is a timing fault detection technique that employs double sampling by the main and shadow FFs. In order for the Razor FF to correctly detect a timing fault, not the main FF but the shadow FF must sample the correct value. The application of Razor FFs to static logic relaxes the timing constraints; however, the naive application of Razor FFs to dynamic precharged logic such as SRAM read circuits is not effective. This is because the SRAM precharge cannot start before the shadow FF samples the value; otherwise, the transition of the bitline of the SRAM stops and the value sampled by the shadow FF will be incorrect. Therefore, the detect period cannot overlap the precharge period. This paper proposes a novel application of Razor FFs to SRAM read circuits. Our proposal employs a conditional precharge according to the value of a bitline sampled by the main FF. This enables the detect period to overlap the precharge period, thereby relaxing the timing constraints. The additional circuit required by this method is simple and only needed around the sense amplifier, and there is no need for a clock delayed from the system clock. Consequently, the area overhead of the proposed circuit is negligible. This paper presents SPICE simulations of the proposed circuit. Our proposal reduces the minimum cycle time by 51.5% at a supply voltage of 1.1 V and the minimum voltage by 31.8% at cycle time of 412.5 ps.

  • How to Efficiently Exploit Different Types of Biases for Plaintext Recovery of RC4

    Yuhei WATANABE  Takanori ISOBE  Toshihiro OHIGASHI  Masakatu MORII  

     
    PAPER-Cryptography and Information Security

      Vol:
    E100-A No:3
      Page(s):
    803-810

    RC4 is a well-known stream cipher designed by Rivest. Due to considerable cryptanalysis efforts over past 20 years, several kinds of statistic biases in a key stream of RC4 have been observed so far. Finally, practical full plaintext recovery attacks on RC4 in SSL/TLS were independently proposed by AlFardan et al. and Isobe et al. in 2013. Responded to these attacks, usage of RC4 has drastically decreased in SSL/TLS. However, according to the research by Trustworthy Internet Movement, RC4 is still used by some websites for the encryption on SSL/TLS. In this paper, we shows a new plaintext recovery attack for RC4 under the assumption of HTTPS. We develop a method for exploiting single-byte and double-byte biases together to efficiently guess the target bytes, while previous attacks use either single-byte biases or double-byte biases. As a result, target plaintext bytes can be extracted with higher probability than previous best attacks given 229 ciphertexts encrypted by randomly-chosen keys. In the most efficient case, the success probability of our attack are more than twice compared to previous best attacks.

  • Achievable Rate Region for the Two-User Gaussian X Channel with Limited Receiver Cooperation: General Case

    Surapol TAN-A-RAM  Watit BENJAPOLAKUL  

     
    PAPER-Information Theory

      Vol:
    E100-A No:3
      Page(s):
    822-831

    In this paper, we propose to use a strategy for the two-user Gaussian X channel with limited receiver cooperation in the general case consisting of two parts: 1) the transmission scheme where the superposition coding is used and 2) the cooperative protocol where the two-round strategy based on quantize-map-and-forward (QMF) is employed. We image that a Gaussian X channel can be considered as a superposition of two Gaussian interference channels based on grouping of the sent messages from each transmitter to the corresponding receivers. Finally, we give an achievable rate region for the general case of this channel.

  • Index ARQ Protocol for Reliable Contents Distribution over Broadcast Channels

    Takahiro OSHIMA  Tadashi WADAYAMA  

     
    PAPER-Coding Theory

      Vol:
    E100-A No:3
      Page(s):
    832-838

    In the present paper, we propose a broadcast ARQ protocol based on the concept of index coding. In the proposed scenario, a server wishes to transmit a finite sequence of packets to multiple receivers via a broadcast channel with packet erasures until all of the receivers successfully receive all of the packets. In the retransmission phase, the server produces a coded packet as a retransmitted packet based on the side-information sent from the receivers via feedback channels. A notable feature of the proposed protocol is that the decoding process at the receiver side has low decoding complexity because only a small number of addition operations are needed in order to recover an intended packet. This feature may be preferable for reducing the power consumption of receivers. The throughput performance of the proposed protocol is close to that of the ideal FEC throughput performance when the erasure probability is less than 0.1. This implies that the proposed protocol provides almost optimal throughput performance in such a regime.

6561-6580hit(42807hit)