The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] (42807hit)

6381-6400hit(42807hit)

  • A High Performance FPGA-Based Sorting Accelerator with a Data Compression Mechanism

    Ryohei KOBAYASHI  Kenji KISE  

     
    PAPER-Computer System

      Pubricized:
    2017/01/30
      Vol:
    E100-D No:5
      Page(s):
    1003-1015

    Sorting is an extremely important computation kernel that has been accelerated in a lot of fields such as databases, image processing, and genome analysis. Given that advent of Internet of Things (IoT) era due to mobile technology progressions, the future needs a sorting method that is available on any environment, such as not only high performance systems like servers but also low computational performance machines like embedded systems. In this paper, we present an FPGA-based sorting accelerator combining Sorting Network and Merge Sorter Tree, which is customizable by means of tuning design parameters. The proposed FPGA accelerator sorts data sent from a host PC via the PCIe bus, and sends back the fully sorted data sequence to it. We also present a detailed analytical model that accurately estimates the sorting performance. Due to these characteristics, designers can know how fast a developed sorting hardware is in advance and can implement the best one to fulfill the cost and performance constraints. Our experiments show that the proposed hardware achieves up to 19.5x sorting performance, compared with Intel Core i7-3770K operating at 3.50GHz, when sorting 256M 32-bits integer elements. However, this result is limited because of insufficient memory bandwidth. To overcome this problem, we propose a data compression mechanism and the experimental result shows that the sorting hardware with it achieves almost 90% of the estimated performance, while the hardware without it does about 60%. In order to allow every designer to easily and freely use this accelerator, the RTL source code is released as open-source hardware.

  • Phonon-Drag Effect on Seebeck Coefficient in Co-Doped Si Wire with Submicrometer-Scaled Cross Section

    Yuhei SUZUKI  Faiz SALLEH  Yoshinari KAMAKURA  Masaru SHIMOMURA  Hiroya IKEDA  

     
    BRIEF PAPER

      Vol:
    E100-C No:5
      Page(s):
    486-489

    The Seebeck coefficient of Si wire co-doped with P and Ga atoms is investigated for applying thermoelectric devices. The observed Seebeck coefficient is closed to the theoretical values of electronic part of Seebeck coefficient due to the electronic transport. From the estimation of phonon scattering processes, it is found that the phonon-drag contribution to the Seebeck coefficient in co-doped Si wire is mainly governed by the phonon-boundary scattering.

  • Change-Prone Java Method Prediction by Focusing on Individual Differences in Comment Density

    Aji ERY BURHANDENNY  Hirohisa AMAN  Minoru KAWAHARA  

     
    LETTER-Software Engineering

      Pubricized:
    2017/02/15
      Vol:
    E100-D No:5
      Page(s):
    1128-1131

    This paper focuses on differences in comment densities among individual programmers, and proposes to adjust the conventional code complexity metric (the cyclomatic complexity) by using the abnormality of the comment density. An empirical study with nine popular open source Java products (including 103,246 methods) shows that the proposed metric performs better than the conventional one in predicting change-prone methods; the proposed metric improves the area under the ROC curve (AUC) by about 3.4% on average.

  • Joint Optimization of Parameters for Enhanced Inter-Cell Interference Coordination (eICIC) in LTE-A HetNets

    Yanzan SUN  Zhijuan WANG  Tao WANG  Yating WU  Yong FANG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/11/16
      Vol:
    E100-B No:5
      Page(s):
    799-807

    LTE-Advanced heterogeneous networks (HetNets), consisting of conventional Macrocells overlaid by Picocells and forming a hierarchical cell structure, constitute an attractive way of improving the Macrocell capacity and coverage. However, the inter-tier interferences in such systems can significantly reduce the capacity and cause unacceptably high levels of control channel outage. Thus time domain Enhanced Inter-cell Interference Coordination (eICIC), such as almost blank subframe (ABS) and cell range expansion (CRE) techniques, has been proposed to mitigate the interference and improve the system capacity in HetNets. In order to acquire the benefit of eICIC technology efficiently, the three parameters, i.e. ABS ratio, ABS power and CRE bias, should be carefully configured jointly. Motivated by the above considerations, we first propose a single parameter optimization algorithm that fixes the other two parameters and then optimizes them separately. Then, a heuristic joint parameter optimization algorithm is proposed to maximize the system throughput. Extensive simulation results illustrate that the proposed algorithms clearly outperform the fixed parameter configuration, and is close to that of the traversal search algorithm even though they have lower computation complexity

  • Resource Sharing Strategy for D2D Communication Underlaying Multichannel Cellular Networks

    Yingjing QIAN  Ni ZHOU  Dajiang HE  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/11/21
      Vol:
    E100-B No:5
      Page(s):
    818-825

    Device-to-device (D2D) communication enables two local users to communicate with each other directly instead of relaying through a third party, e.g., base station. In this paper, we study a subchannel sharing strategy underlaying multichannel cellular network for D2D pairs and existing cellular users (CUs). In the investigated scenario, we try to improve the spectrum efficiency of D2D pairs, but inevitably brings cross interference between two user groups. To combat interference, we attempt to assign each D2D pair with appropriate subchannels, which may belong to different CUs, and manipulate transmission power of all users so as to maximize the sum rate of all D2D pairs, while assuring each CU with a minimum data rate on its subchannel set. The formulated problem is a nonconvex problem and thus, obtaining its optimal solution is a tough task. However, we can find optimal power and subchannel assignment for a special case by setting an independent data rate constraint on each subchannel. Then we find an efficient method to calculate a gradient for our original problem. Finally, we propose a gradient-based search method to address the problem with coupled minimum data rate constraint. The performance of our proposed subchannel sharing strategy is illustrated via extensive simulation results.

  • Achieving Scalable and Optimized Attribute Revocation in Cloud Computing

    Somchart FUGKEAW  Hiroyuki SATO  

     
    PAPER

      Pubricized:
    2017/02/08
      Vol:
    E100-D No:5
      Page(s):
    973-983

    Revocation is one of the major problems for access control systems. Especially, the revocation cost for the data outsourced in the third party environment such as cloud storage systems. The revocation in the cloud-based access control typically deals with the cryptographic operations that introduce costly overheads for key re-generation, file re-encryption, and key re-distribution. Also, the communication for retrieving files for re-encryption and loading them back to the cloud is another non-trivial cost for data owners. In this paper, we propose a Very Lightweight Proxy Re-Encryption (VL-PRE) scheme to efficiently support attribute-based revocation and policy update in the collaborative data sharing in cloud computing environment. To this end, we propose three-phase VL-PRE protocol including re-encryption key generation, re-encryption key update, and re-encryption key renewal for supporting the optimized attribute revocation and policy update. Finally, we conduct the experiments to evaluate the performance of our VL-PRE and show that it exhibits less computation cost with higher scalability in comparison with existing PRE schemes.

  • A Simple and Fast CU Division Algorithm for HEVC Intra Prediction

    Yankang WANG  Ryota TAKAGI  Genki YOSHITAKE  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2017/02/06
      Vol:
    E100-D No:5
      Page(s):
    1140-1143

    High Efficiency Video Coding is a new video coding standard after H.264/AVC. By introducing a flexible coding unit, which can be recursively divided from 64×64 to 8×8 blocks in a Quadtree-Structure, HEVC achieves significantly higher coding efficiency than the previous standards. With the flexible CU structure, HEVC can effectively adapt to highly varying contents with a smaller CU or to flat contents with a larger CU, making it suitable for applications from mobile video to super high definition television. On the other hand, CU division does incur high computational cost for HEVC. In this paper, we propose a simple and fast CU division algorithm by using only a subset of pixels to determine when CU division happens. Experiment results show that our algorithm can achieve prediction quality close to HEVC Test Model with much lower computational cost.

  • Accurate Nanopower Supply-Insensitive CMOS Unit Vth Extractor and αVth Extractor with Continuous Variety

    Jing WANG  Li DING  Qiang LI  Hirofumi SHINOHARA  Yasuaki INOUE  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E100-A No:5
      Page(s):
    1145-1155

    In this paper, a nanopower supply-insensitive complementary metal-oxide-semiconductor (CMOS) unit threshold voltage (Vth) extractor circuit is proposed. It meets the contemporary industry demand for portable devices that operate with very low power consumption and small output sensitivity. An α times Vth (αVth) extractor is also described, in which α varies continuously. Both incremental and decremental αVth voltages are obtained. A post-layout simulation results using HSPICE with CMOS 0.18um process show that the proposed unit Vth extractor consumes 265nW of power given a 1.6V power supply. Sensitivity to temperature is 0.022%/°C ranging from 0°C to 100°C. Sensitivity to supply voltage is 0.027%/V.

  • Embedding of Ti Nanodots into SiOx and Its Impact on Resistance Switching Behaviors

    Yusuke KATO  Akio OHTA  Mitsuhisa IKEDA  Katsunori MAKIHARA  Seiichi MIYAZAKI  

     
    PAPER

      Vol:
    E100-C No:5
      Page(s):
    468-474

    We have studied the formation of Ti-nanodots (NDs) by remote H2 plasma (H2-RP) exposure and investigated how the embedding of Ti-NDs affects the resistive switching properties of Si-rich oxides (SiOx) because it is expected that NDs will trigger the formation of the conductive filament path in SiOx. Ti-NDs with an areal density as high as 1011 cm-2 were fabricated by exposing a Ge/Ti stacked layer to the H2-RP without external heating, and changes in the chemical structure of Ge/Ti stacked layer with the Ti-NDs formation were evaluated by using hard x-ray photoemission spectroscopy (HAXPES) and x-ray photoelectron spectroscopy (XPS). Resistive switching behaviors of SiOx with Ti-NDs were measured from current-voltage curves and compared to the results obtained from samples of SiOx with a Ti thin layer.

  • Analysis of Effective Material Properties of Metal Dummy Fills in a CMOS Chip

    Takuichi HIRANO  Ning LI  Kenichi OKADA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2016/11/21
      Vol:
    E100-B No:5
      Page(s):
    793-798

    The equivalent anisotropic material parameters of metal dummy fills in a CMOS chip were extracted through an eigenmode analysis of a unit-cell of a space filled with metal dummies. The validity of the parameters was confirmed by comparing the S-parameters of a parallel-plate waveguide with the metal dummy fills and their effective material properties. The validity of the effective material properties was also confirmed by using them in a simulation of an on-chip dipole antenna.

  • Optimizing Sensing Scheduling for Cooperative Spectrum Sensing in Cognitive Radio Networks

    Tran-Nhut-Khai HOAN  Vu-Van HIEP  Insoo KOO  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2016/12/01
      Vol:
    E100-B No:5
      Page(s):
    884-892

    In this paper, we consider optimal sensing scheduling for sequential cooperative spectrum sensing (SCSS) technique in cognitive radio networks (CRNs). Activities of primary users (PU) on a primary channel are captured by using a two states discrete time Markov chain process and a soft combination is considered at the FC. Based on the theory of optimal stopping, we propose an algorithm to optimize the cooperative sensing process in which the FC sequentially asks each CU to report its sensing result until the stopping condition that provides the maximum expected throughput for the CRN is satisfied. Simulation result shows that the performance of the proposed scheme can be improved by further shortening the reporting overhead and reducing the probability of false alarm in comparison to other schemes in literature. In addition, the collision ratio on the primary channel is also investigated.

  • Fast Intra Coding Algorithm for HEVC Based on Decision Tree

    Jia QIN  Huihui BAI  Mengmeng ZHANG  Yao ZHAO  

     
    LETTER-Image

      Vol:
    E100-A No:5
      Page(s):
    1274-1278

    High Efficiency Video Coding (HEVC) is the latest coding standard. Compared with Advanced Video coding (H.264/AVC), HEVC offers about a 50% bitrate reduction at the same reconstructed video quality. However, this new coding standard leads to enormous computational complexity, which makes it difficult to encode video in real time. Therefore, in this paper, aiming at the high complexity of intra coding in HEVC, a new fast coding unit (CU) splitting algorithm is proposed based on the decision tree. Decision tree, as a method of machine learning, can be designed to determine the size of CUs adaptively. Here, two significant features, Just Noticeable Difference (JND) values and coding bits of each CU can be extracted to train the decision tree, according to their relationships with the CUs' partitions. The experimental results have revealed that the proposed algorithm can save about 34% of time, on average, with only a small increase of BD-rate under the “All_Intra” setting, compared with the HEVC reference software.

  • Improving the Performance of DOA Estimation Using Virtual Antenna in Automotive Radar

    Seokhyun KANG  Seongwook LEE  Jae-Eun LEE  Seong-Cheol KIM  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2016/11/25
      Vol:
    E100-B No:5
      Page(s):
    771-778

    In this paper, the virtual antenna technique is applied to a single input multiple output (SIMO) radar system to enhance the performance of the conventional beamforming direction of arrival (DOA) estimation method. Combining the virtual array generated by the interpolated array technique and the real array, the angular resolution of the DOA estimation algorithm is improved owing to the extended number of antennas and aperture size. Based on the proposed interpolation technique, we transform the position of the antenna elements in a uniform linear array (ULA) to the arbitrary positions to suppress the grating lobe and side lobe levels. In simulations, the pseudo spectrum of the Bartlett algorithm and the root mean square error (RMSE) of the DOA estimation with the signal-to-noise ratio (SNR) are analyzed for the real array and the proposed virtually extended array. Simulation results show that the angular resolution of the proposed array is better than that of the real array using the same aperture size of array and the number of antennas. The proposed technique is verified with the practical data from commercialized radar system.

  • Phonon-Drag Contribution to Seebeck Coefficient in P-Type Si, Ge and Si1-xGex

    Veerappan MANIMUTHU  Muthusamy OMPRAKASH  Mukannan ARIVANANDHAN  Faiz SALLEH  Yasuhiro HAYAKAWA  Hiroya IKEDA  

     
    BRIEF PAPER

      Vol:
    E100-C No:5
      Page(s):
    482-485

    The phonon-drag contribution to the Seebeck coefficient (Sph) for p-type Si, Ge and Si1-xGex is investigated for thermoelectric applications. The Sph in Si and Ge is found to mainly determined by the phonon velocity, phonon mean free path and carrier mobility associated with acoustic deformation potential scattering. Moreover, the Sph in Si1-xGex is predictable by the above-mentioned material parameters interpolated with those in Si and Ge.

  • Statistical Analysis of Phase-Only Correlation Functions between Real Signals with Stochastic Phase-Spectrum Differences

    Shunsuke YAMAKI  Masahide ABE  Masayuki KAWAMATA  

     
    PAPER-Digital Signal Processing

      Vol:
    E100-A No:5
      Page(s):
    1097-1108

    This paper proposes the statistical analysis of phase-only correlation functions between two real signals with phase-spectrum differences. For real signals, their phase-spectrum differences have odd-symmetry with respect to frequency indices. We assume phase-spectrum differences between two signals to be random variables. We next derive the expectation and variance of the POC functions considering the odd-symmetry of the phase-spectrum differences. As a result, the expectation and variance of the POC functions can be expressed by characteristic functions or trigonometric moments of the phase-spectrum differences. Furthermore, it is shown that the peak value of the POC function monotonically decreases and the sidelobe values monotonically increase as the variance of the phase-spectrum differences increases.

  • A Novel Procedure for Implementing a Turbo Decoder on a GPU with Coalesced Memory Access

    Heungseop AHN  Seungwon CHOI  

     
    PAPER-Communication Theory and Signals

      Vol:
    E100-A No:5
      Page(s):
    1188-1196

    The sub-blocking algorithm has been known as a core component in implementing a turbo decoder using a Graphic Processing Unit (GPU) to use as many cores in the GPU as possible for parallel processing. However, even though the sub-blocking algorithm allows a large number of threads in a given GPU to be adopted for processing a large number of sub-blocks in parallel, each thread must access the global memory with strided addresses, which results in uncoalesced memory access. Because uncoalesced memory access causes a lot of unnecessary memory transactions, the memory bandwidth efficiency drops significantly, possibly as low as 1/8 in the case of an Long Term Evolution (LTE) turbo decoder, depending upon the compute capability of a GPU. In this paper, we present a novel method for converting uncoalesced memory access into coalesced access in a way that completely recovers the memory bandwidth efficiency to 100% without additional overhead. Our experimental tests, performed with NVIDIA's Geforce GTX 780 Ti GPU, show that the proposed method can enhance the throughput by nearly 30% compared with a conventional turbo decoder that suffers from uncoalesced memory access. Throughput provided by the proposed method has been observed to be 51.4Mbps when the number of iterations and that of sub-blocks are set to 6 and 32, respectively, in our experimental tests, which far exceeds the performance of previous works implemented the Max-Log-MAP algorithm.

  • Network Assisted Wi-Fi Direct Based on Media Independent Services Framework for Allocating Optimized Radio Resources

    Hyunho PARK  Hyeong Ho LEE  Yong-Tae LEE  

     
    PAPER-Network

      Pubricized:
    2016/11/29
      Vol:
    E100-B No:5
      Page(s):
    728-737

    Wi-Fi Direct is a promising and available technology for device-to-device (D2D) proximity communications. To improve the performances of Wi-Fi Direct communication, optimized radio resource allocations are important. This paper proposes network assisted Wi-Fi Direct (NAWD), which operates based on the media independent services framework of IEEE 802.21 standard, for optimizing radio resource allocations. The NAWD is enhanced Wi-Fi Direct with the assistance of infrastructure networks (e.g., cellular network) and allocates radio resources (e.g., frequency channels and transmit power) to reduce radio interferences among Wi-Fi Direct devices (e.g., smart phones and set-top boxes). The NAWD includes mechanisms for gathering configuration information (e.g., location information and network connection information) of Wi-Fi Direct devices and allocating optimized radio resources (e.g., frequency channels and transmit power) to reduce radio interferences among Wi-Fi Direct devices. Simulation results show that the proposed NAWD increases significantly SINR, power efficiency, and areal capacity compared to legacy Wi-Fi Direct, where areal capacity is total traffic throughput per unit area.

  • Multi-View 3D Ball Tracking with Abrupt Motion Adaptive System Model, Anti-Occlusion Observation and Spatial Density Based Recovery in Sports Analysis

    Xina CHENG  Norikazu IKOMA  Masaaki HONDA  Takeshi IKENAGA  

     
    PAPER-Vision

      Vol:
    E100-A No:5
      Page(s):
    1215-1225

    Significant challenges in ball tracking of sports analysis by computer vision technology are: 1) accuracy of estimated 3D ball trajectory under difficult conditions; 2) external forces added by players lead to irregular motions of the ball; 3) unpredictable situations in the real game, i.e. the ball occluded by players and other objects, complex background and changing lighting condition. With the goal of multi-view 3D ball tracking, this paper proposes an abrupt motion adaptive system model, an anti-occlusion observation model, and a spatial density-based automatic recovery based on particle filter. The system model combines two different system noises that cover the motion of the ball both in general situation and situation subject to abrupt motion caused by external force. Combination ratio of these two noises and number of particles are adaptive to the estimated motion by weight distribution of particles. The anti-occlusion observation model evaluates image feature of each camera and eliminates influence of the camera with less confidence. The spatial density, which is calculated based on 3D ball candidates filtered out by spatial homographic relationship between cameras, is proposed for generating new set of particles to recover the tracking when tracking failure is detected. Experimental results based on HDTV video sequences (2014 Inter High School Men's Volleyball Games, Japan), which were captured by four cameras located at each corner of the court, show that the success rate achieved by the proposals of 3D ball tracking is 99.42%.

  • Joint Source and Relay Beamformer Design for General MIMO Relaying Broadcast Channel with Imperfect Channel State Information

    Yun LI  Haibin WAN  Wen CHEN  Tohru ASAMI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/12/01
      Vol:
    E100-B No:5
      Page(s):
    852-864

    Effective communication strategies with a properly designed source precoding matrix (PM) and a properly designed relay beamforming matrix (BM) can significantly improve the spectral efficiency of multiple-input multiple-output (MIMO) relaying broadcast channels (RBCs). In the present paper, we first propose a general communication scheme with non-regenerative relay that can overcome the half-duplex relay constraint of the general MIMO-RBC. Based on the proposed scheme, the robust source PM and relay BM are designed for imperfect channel state information at the transmitter (CSIT). In contrast to the conventional non-regenerative relaying communication scheme for the MIMO-RBC, in the proposed scheme, the source can send information continuously to the relay and users during two phases. Furthermore, in conjunction with the advanced precoding strategy, the proposed scheme can achieve a full-degree-of-freedom (DoF) MIMO-RBC with that each entry in the related channel matrix is considered to an i.i.d. complex Gaussian variable. The robust source PM and relay BM designs were investigated based on both throughput and fairness criteria with imperfect CSIT. However, solving the problems associated with throughput and fairness criteria for the robust source PM and relay BM designs is computationally intractable because these criteria are non-linear and non-convex. In order to address these difficulties, we first set up equivalent optimization problems based on a tight lower bound of the achievable rate. We then decompose the equivalent throughput problem into several decoupled subproblems with tractable solutions. Finally, we obtain the suboptimal solution for the throughput problem by an alternating optimization approach. We solve the fairness problem by introducing an adjusted algorithm according to the throughput problem. Finally, we demonstrate that, in both cases of throughput and fairness criteria, the proposed relaying communication scheme with precoding algorithms outperforms existing methods.

  • An Efficient Approximate Algorithm for the 1-Median Problem on a Graph

    Koji TABATA  Atsuyoshi NAKAMURA  Mineichi KUDO  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2017/01/23
      Vol:
    E100-D No:5
      Page(s):
    994-1002

    We propose a heuristic approximation algorithm for the 1-median problem. The 1-median problem is the problem of finding a vertex with the highest closeness centrality. Starting from a randomly selected vertex, our algorithm repeats to find a vertex with higher closeness centrality by approximately calculating closeness centrality of each vertex using simpler spanning subgraphs, which are called k-neighbor dense shortest path graphs with shortcuts. According to our experimental results using real networks with more than 10,000 vertices, our algorithm is more than 100 times faster than the exhaustive search and more than 20 times faster than the state-of-the-art approximation algorithm using annotated information to the vertices while the solutions output by our algorithm have higher approximation ratio.

6381-6400hit(42807hit)