The search functionality is under construction.

Keyword Search Result

[Keyword] ACK(2391hit)

101-120hit(2391hit)

  • Maximum Doppler Frequency Detection Based on Likelihood Estimation With Theoretical Thresholds Open Access

    Satoshi DENNO  Kazuma HOTTA  Yafei HOU  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2021/10/25
      Vol:
    E105-B No:5
      Page(s):
    657-664

    This paper proposes a novel maximum Doppler frequency detection technique for user moving velocity estimation. The maximum Doppler frequency is estimated in the proposed detection technique by making use of the fact that user moving velocity is not distributed continuously. The fluctuation of the channel state information during a packet is applied for the proposed detection, in which likelihood estimation is performed by comparing the fluctuation with the thresholds. The thresholds are theoretically derived on the assumption that the fluctuation is distributed with an exponential function. An approximated detection technique is proposed to simplify the theoretical threshold derivation. The performance of the proposed detection is evaluated by computer simulation. The proposed detection accomplishes better detection performance as the fluctuation values are summed over more packets. The proposed detection achieves about 90% correct detection performance in a fading channel with the Eb/N0 = 35dB, when the fluctuation values are summed over only three packets. Furthermore, the approximated detection also achieves the same detection performance.

  • Feature-Based Adversarial Training for Deep Learning Models Resistant to Transferable Adversarial Examples

    Gwonsang RYU  Daeseon CHOI  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/02/22
      Vol:
    E105-D No:5
      Page(s):
    1039-1049

    Although deep neural networks (DNNs) have achieved high performance across a variety of applications, they can often be deceived by adversarial examples that are generated by adding small perturbations to the original images. Adversaries may generate adversarial examples using the property of transferability, in which adversarial examples that deceive one model can also deceive other models because adversaries do not obtain any information on the DNNs deployed in real scenarios. Recent studies show that adversarial examples with feature space perturbations are more transferable than others. Adversarial training is an effective method to defend against adversarial attacks. However, it results in a decrease in the classification accuracy for natural images, and it is not sufficiently robust against transferable adversarial examples because it does not consider adversarial examples with feature space perturbations. We propose a novel adversarial training method to train DNNs to be robust against transferable adversarial examples and maximize their classification accuracy for natural images. The proposed method trains DNNs to correctly classify natural images and adversarial examples and also minimize the feature differences between them. The robustness of the proposed method was similar to those of the previous adversarial training methods for MNIST dataset and was up to average 6.13% and 9.24% more robust against transfer adversarial examples for CIFAR-10 and CIFAR-100 datasets, respectively. In addition, the proposed method yielded an average classification accuracy that was approximately 0.53%, 6.82%, and 10.60% greater than some state-of-the-art adversarial training methods for all datasets, respectively. The proposed method is robust against a variety of transferable adversarial examples, which enables its implementation in security applications that may benefit from high-performance classification but are at high risk of attack.

  • A Method for Generating Color Palettes with Deep Neural Networks Considering Human Perception

    Beiying LIU  Kaoru ARAKAWA  

     
    PAPER-Image, Vision, Neural Networks and Bioengineering

      Pubricized:
    2021/09/30
      Vol:
    E105-A No:4
      Page(s):
    639-646

    A method to generate color palettes from images is proposed. Here, deep neural networks (DNN) are utilized in order to consider human perception. Two aspects of human perception are considered; one is attention to image, and the other is human preference for colors. This method first extracts N regions with dominant color categories from the image considering human attention. Here, N is the number of colors in a color palette. Then, the representative color is obtained from each region considering the human preference for color. Two deep neural-net systems are adopted here, one is for estimating the image area which attracts human attention, and the other is for estimating human preferable colors from image regions to obtain representative colors. The former is trained with target images obtained by an eye tracker, and the latter is trained with dataset of color selection by human. Objective and subjective evaluation is performed to show high performance of the proposed system compared with conventional methods.

  • Stability Analysis and Control of Decision-Making of Miners in Blockchain

    Kosuke TODA  Naomi KUZE  Toshimitsu USHIO  

     
    PAPER-Nonlinear Problems

      Pubricized:
    2021/10/01
      Vol:
    E105-A No:4
      Page(s):
    682-688

    To maintain blockchain-based services with ensuring its security, it is an important issue how to decide a mining reward so that the number of miners participating in the mining increases. We propose a dynamical model of decision-making for miners using an evolutionary game approach and analyze the stability of equilibrium points of the proposed model. The proposed model is described by the 1st-order differential equation. So, it is simple but its theoretical analysis gives an insight into the characteristics of the decision-making. Through the analysis of the equilibrium points, we show the transcritical bifurcations and hysteresis phenomena of the equilibrium points. We also design a controller that determines the mining reward based on the number of participating miners to stabilize the state where all miners participate in the mining. Numerical simulation shows that there is a trade-off in the choice of the design parameters.

  • NFD.P4: NDN In-Networking Cache Implementation Scheme with P4

    Saifeng HOU  Yuxiang HU  Le TIAN  Zhiguang DANG  

     
    LETTER-Information Network

      Pubricized:
    2021/12/27
      Vol:
    E105-D No:4
      Page(s):
    820-823

    This work proposes NFD.P4, a cache implementation scheme in Named Data Networking (NDN), to solve the problem of insufficient cache space of prgrammable switch and realize the practical application of NDN. We transplant the cache function of NDN.P4 to the NDN Forwarding Daemon (NFD) cache server, which replace the memory space of programmable switch.

  • Activation-Aware Slack Assignment Based Mode-Wise Voltage Scaling for Energy Minimization

    TaiYu CHENG  Yutaka MASUDA  Jun NAGAYAMA  Yoichi MOMIYAMA  Jun CHEN  Masanori HASHIMOTO  

     
    PAPER

      Pubricized:
    2021/08/31
      Vol:
    E105-A No:3
      Page(s):
    497-508

    Reducing power consumption is a crucial factor making industrial designs, such as mobile SoCs, competitive. Voltage scaling (VS) is the classical yet most effective technique that contributes to quadratic power reduction. A recent design technique called activation-aware slack assignment (ASA) enhances the voltage-scaling by allocating the timing margin of critical paths with a stochastic mean-time-to-failure (MTTF) analysis. Meanwhile, such stochastic treatment of timing errors is accepted in limited application domains, such as image processing. This paper proposes a design optimization methodology that achieves a mode-wise voltage-scalable (MWVS) design guaranteeing no timing errors in each mode operation. This work formulates the MWVS design as an optimization problem that minimizes the overall power consumption considering each mode duration, achievable voltage lowering and accompanied circuit overhead explicitly, and explores the solution space with the downhill simplex algorithm that does not require numerical derivation and frequent objective function evaluations. For obtaining a solution, i.e., a design, in the optimization process, we exploit the multi-corner multi-mode design flow in a commercial tool for performing mode-wise ASA with sets of false paths dedicated to individual modes. We applied the proposed design methodology to RISC-V design. Experimental results show that the proposed methodology saves 13% to 20% more power compared to the conventional VS approach and attains 8% to 15% gain from the conventional single-mode ASA. We also found that cycle-by-cycle fine-grained false path identification reduced leakage power by 31% to 42%.

  • Receiver Selective Opening Chosen Ciphertext Secure Identity-Based Encryption

    Keisuke HARA  Takahiro MATSUDA  Keisuke TANAKA  

     
    PAPER

      Pubricized:
    2021/08/26
      Vol:
    E105-A No:3
      Page(s):
    160-172

    In the situation where there are one sender and multiple receivers, a receiver selective opening (RSO) attack for an identity-based encryption (IBE) scheme considers adversaries that can corrupt some of the receivers and get their user secret keys and plaintexts. Security against RSO attacks for an IBE scheme ensures confidentiality of ciphertexts of uncorrupted receivers. In this paper, we formalize a definition of RSO security against chosen ciphertext attacks (RSO-CCA security) for IBE and propose the first RSO-CCA secure IBE schemes. More specifically, we construct an RSO-CCA secure IBE scheme based on an IND-ID-CPA secure IBE scheme and a non-interactive zero-knowledge proof system with unbounded simulation soundness and multi-theorem zero-knowledge. Through our generic construction, we obtain the first pairing-based and lattice-based RSO-CCA secure IBE schemes.

  • Approximate Minimum Energy Point Tracking and Task Scheduling for Energy-Efficient Real-Time Computing

    Takumi KOMORI  Yutaka MASUDA  Jun SHIOMI  Tohru ISHIHARA  

     
    PAPER

      Pubricized:
    2021/09/06
      Vol:
    E105-A No:3
      Page(s):
    518-529

    In the upcoming Internet of Things era, reducing energy consumption of embedded processors is highly desired. Minimum Energy Point Tracking (MEPT) is one of the most efficient methods to reduce both dynamic and static energy consumption of a processor. Previous works proposed a variety of MEPT methods over the past years. However, none of them incorporate their algorithms with practical real-time operating systems, although edge computing applications often require low energy task execution with guaranteeing real-time properties. The difficulty comes from the time complexity for identifying an MEP and changing voltages, which often prevents real-time task scheduling. The conventional Dynamic Voltage and Frequency Scaling (DVFS) only scales the supply voltage. On the other hand, MEPT needs to adjust the body bias voltage in addition. This additional tuning knob makes MEPT much more complicated. This paper proposes an approximate MEPT algorithm, which reduces the complexity of identifying an MEP down to that of DVFS. The key idea is to linearly approximate the relationship between the processor frequency, supply voltage, and body bias voltage. Thanks to the approximation, optimal voltages for a specified clock frequency can be derived immediately. We also propose a task scheduling algorithm, which adjusts processor performance to the workload and then provides a soft real-time capability to the system. The operating system stochastically adjusts the average response time of the processor to be equal to a specified deadline. MEPT will be performed as a general task, and its overhead is considered in the calculation of the frequency. The experiments using a fabricated test chip and on-chip sensors show that the proposed algorithm is a maximum of 16 times more energy-efficient than DVFS. Also, the energy loss induced by the approximation is only 3% at most, and the algorithm does not sacrifice the fundamental real-time properties.

  • Mixture-Based 5-Round Physical Attack against AES: Attack Proposal and Noise Evaluation Open Access

    Go TAKAMI  Takeshi SUGAWARA  Kazuo SAKIYAMA  Yang LI  

     
    PAPER

      Pubricized:
    2021/09/30
      Vol:
    E105-A No:3
      Page(s):
    289-299

    Physical attacks against cryptographic devices and their countermeasures have been studied for over a decade. Physical attacks on block-cipher algorithms usually target a few rounds near the input or the output of cryptographic algorithms. Therefore, in order to reduce the implementation cost or increase the performance, countermeasures tend to be applied to the rounds that can be targeted by physical attacks. For example, for AES, the conventional physical attacks have practical complexity when the target leakage is as deep as 4 rounds. In general, the deeper rounds are targeted, the greater the cost required for attackers. In this paper, we focus on the physical attack that uses the leakage as deep as 5 rounds. Specifically, we consider the recently proposed 5-round mixture differential cryptanalysis, which is not physical attack, into the physical attack scenarios, and propose the corresponding physical attack. The proposed attack can break AES-128 with data complexity and time complexity of 225.31. As a result, it is clear that the rounds as deep as 5 must be protected for AES. Furthermore, we evaluated the proposed attack when the information extracted from side-channel leakage contains noise. In the means of theoretical analysis and simulated attacks, the relationship between the accuracy of information leakage and the complexity of the attack is evaluated.

  • Experimental Study of Fault Injection Attack on Image Sensor Interface for Triggering Backdoored DNN Models Open Access

    Tatsuya OYAMA  Shunsuke OKURA  Kota YOSHIDA  Takeshi FUJINO  

     
    PAPER

      Pubricized:
    2021/10/26
      Vol:
    E105-A No:3
      Page(s):
    336-343

    A backdoor attack is a type of attack method inducing deep neural network (DNN) misclassification. An adversary mixes poison data, which consist of images tampered with adversarial marks at specific locations and of adversarial target classes, into a training dataset. The backdoor model classifies only images with adversarial marks into an adversarial target class and other images into the correct classes. However, the attack performance degrades sharply when the location of the adversarial marks is slightly shifted. An adversarial mark that induces the misclassification of a DNN is usually applied when a picture is taken, so the backdoor attack will have difficulty succeeding in the physical world because the adversarial mark position fluctuates. This paper proposes a new approach in which an adversarial mark is applied using fault injection on the mobile industry processor interface (MIPI) between an image sensor and the image recognition processor. Two independent attack drivers are electrically connected to the MIPI data lane in our attack system. While almost all image signals are transferred from the sensor to the processor without tampering by canceling the attack signal between the two drivers, the adversarial mark is injected into a given location of the image signal by activating the attack signal generated by the two attack drivers. In an experiment, the DNN was implemented on a Raspberry pi 4 to classify MNIST handwritten images transferred from the image sensor over the MIPI. The adversarial mark successfully appeared in a specific small part of the MNIST images using our attack system. The success rate of the backdoor attack using this adversarial mark was 91%, which is much higher than the 18% rate achieved using conventional input image tampering.

  • Reduction of LSI Maximum Power Consumption with Standard Cell Library of Stack Structured Cells

    Yuki IMAI  Shinichi NISHIZAWA  Kazuhito ITO  

     
    PAPER

      Pubricized:
    2021/09/01
      Vol:
    E105-A No:3
      Page(s):
    487-496

    Environmental power generation devices such as solar cells are used as power sources for IoT devices. Due to the large internal resistance of such power source, LSIs in the IoT devices may malfunction when the LSI operates at high speed, a large current flows, and the voltage drops. In this paper, a standard cell library of stacked structured cells is proposed to increase the delay of logic circuits within the range not exceeding the clock cycle, thereby reducing the maximum current of the LSIs. We show that the maximum power consumption of LSIs can be reduced without increasing the energy consumption of the LSIs.

  • BlockCSDN: Towards Blockchain-Based Collaborative Intrusion Detection in Software Defined Networking

    Wenjuan LI  Yu WANG  Weizhi MENG  Jin LI  Chunhua SU  

     
    PAPER

      Pubricized:
    2021/09/16
      Vol:
    E105-D No:2
      Page(s):
    272-279

    To safeguard critical services and assets in a distributed environment, collaborative intrusion detection systems (CIDSs) are usually adopted to share necessary data and information among various nodes, and enhance the detection capability. For simplifying the network management, software defined networking (SDN) is an emerging platform that decouples the controller plane from the data plane. Intuitively, SDN can help lighten the management complexity in CIDSs, and a CIDS can protect the security of SDN. In practical implementation, trust management is an important approach to help identify insider attacks (or malicious nodes) in CIDSs, but the challenge is how to ensure the data integrity when evaluating the reputation of a node. Motivated by the recent development of blockchain technology, in this work, we design BlockCSDN — a framework of blockchain-based collaborative intrusion detection in SDN, and take the challenge-based CIDS as a study. The experimental results under both external and internal attacks indicate that using blockchain technology can benefit the robustness and security of CIDSs and SDN.

  • Toward Blockchain-Based Spoofing Defense for Controlled Optimization of Phases in Traffic Signal System

    Yingxiao XIANG  Chao LI  Tong CHEN  Yike LI  Endong TONG  Wenjia NIU  Qiong LI  Jiqiang LIU  Wei WANG  

     
    PAPER

      Pubricized:
    2021/09/13
      Vol:
    E105-D No:2
      Page(s):
    280-288

    Controlled optimization of phases (COP) is a core implementation in the future intelligent traffic signal system (I-SIG), which has been deployed and tested in countries including the U.S. and China. In such a system design, optimal signal control depends on dynamic traffic situation awareness via connected vehicles. Unfortunately, I-SIG suffers data spoofing from any hacked vehicle; in particular, the spoofing of the last vehicle can break the system and cause severe traffic congestion. Specifically, coordinated attacks on multiple intersections may even bring cascading failure of the road traffic network. To mitigate this security issue, a blockchain-based multi-intersection joint defense mechanism upon COP planning is designed. The major contributions of this paper are the following. 1) A blockchain network constituted by road-side units at multiple intersections, which are originally distributed and decentralized, is proposed to obtain accurate and reliable spoofing detection. 2) COP-oriented smart contract is implemented and utilized to ensure the credibility of spoofing vehicle detection. Thus, an I-SIG can automatically execute a signal planning scheme according to traffic information without spoofing data. Security analysis for the data spoofing attack is carried out to demonstrate the security. Meanwhile, experiments on the simulation platform VISSIM and Hyperledger Fabric show the efficiency and practicality of the blockchain-based defense mechanism.

  • Semantic Shilling Attack against Heterogeneous Information Network Based Recommend Systems

    Yizhi REN  Zelong LI  Lifeng YUAN  Zhen ZHANG  Chunhua SU  Yujuan WANG  Guohua WU  

     
    PAPER

      Pubricized:
    2021/11/30
      Vol:
    E105-D No:2
      Page(s):
    289-299

    The recommend system has been widely used in many web application areas such as e-commerce services. With the development of the recommend system, the HIN modeling method replaces the traditional bipartite graph modeling method to represent the recommend system. But several studies have already showed that recommend system is vulnerable to shilling attack (injecting attack). However, the effectiveness of how traditional shilling attack has rarely been studied directly in the HIN model. Moreover, no study has focused on how to enhance shilling attacks against HIN recommend system by using the high-level semantic information. This work analyzes the relationship between the high-level semantic information and the attacking effects in HIN recommend system. This work proves that attack results are proportional to the high-level semantic information. Therefore, we propose a heuristic attack method based on high-level semantic information, named Semantic Shilling Attack (SSA) on a HIN recommend system (HERec). This method injects a specific score into each selected item related to the target in semantics. It ensures transmitting the misleading information towards target items and normal users, and attempts to interfere with the effect of the recommend system. The experiment is dependent on two real-world datasets, and proves that the attacking effect is positively correlate with the number of meta-paths. The result shows that our method is more effective when compared with existing baseline algorithms.

  • Multi-Model Selective Backdoor Attack with Different Trigger Positions

    Hyun KWON  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/10/21
      Vol:
    E105-D No:1
      Page(s):
    170-174

    Deep neural networks show good performance in image recognition, speech recognition, and pattern analysis. However, deep neural networks show weaknesses, one of which is vulnerability to backdoor attacks. A backdoor attack performs additional training of the target model on backdoor samples that contain a specific trigger so that normal data without the trigger will be correctly classified by the model, but the backdoor samples with the specific trigger will be incorrectly classified by the model. Various studies on such backdoor attacks have been conducted. However, the existing backdoor attack causes misclassification by one classifier. In certain situations, it may be necessary to carry out a selective backdoor attack on a specific model in an environment with multiple models. In this paper, we propose a multi-model selective backdoor attack method that misleads each model to misclassify samples into a different class according to the position of the trigger. The experiment for this study used MNIST and Fashion-MNIST as datasets and TensorFlow as the machine learning library. The results show that the proposed scheme has a 100% average attack success rate for each model while maintaining 97.1% and 90.9% accuracy on the original samples for MNIST and Fashion-MNIST, respectively.

  • An Exploration of npm Package Co-Usage Examples from Stack Overflow: A Case Study

    Syful ISLAM  Dong WANG  Raula GAIKOVINA KULA  Takashi ISHIO  Kenichi MATSUMOTO  

     
    PAPER

      Pubricized:
    2021/10/11
      Vol:
    E105-D No:1
      Page(s):
    11-18

    Third-party package usage has become a common practice in contemporary software development. Developers often face different challenges, including choosing the right libraries, installing errors, discrepancies, setting up the environment, and building failures during software development. The risks of maintaining a third-party package are well known, but it is unclear how information from Stack Overflow (SO) can be useful. This paper performed an empirical study to explore npm package co-usage examples from SO. From over 30,000 SO question posts, we extracted 2,100 posts with package usage information and matched them against the 217,934 npm library package. We find that, popular and highly used libraries are not discussed as often in SO. However, we can see that the accepted answers may prove useful, as we believe that the usage examples and executable commands could be reused for tool support.

  • A Self-Powered Flyback Pulse Resonant Circuit for Combined Piezoelectric and Thermoelectric Energy Harvesting

    Huakang XIA  Yidie YE  Xiudeng WANG  Ge SHI  Zhidong CHEN  Libo QIAN  Yinshui XIA  

     
    PAPER-Electronic Circuits

      Pubricized:
    2021/06/23
      Vol:
    E105-C No:1
      Page(s):
    24-34

    A self-powered flyback pulse resonant circuit (FPRC) is proposed to extract energy from piezoelectric (PEG) and thermoelectric generators (TEG) simultaneously. The FPRC is able to cold start with the PEG voltage regardless of the TEG voltage, which means the TEG energy is extracted without additional cost. The measurements show that the FPRC can output 102 µW power under the input PEG and TEG voltages of 2.5 V and 0.5 V, respectively. The extracted power is increased by 57.6% compared to the case without TEGs. Additionally, the power improvement with respect to an ideal full-wave bridge rectifier is 2.71× with an efficiency of 53.9%.

  • Backward-Compatible Forward Error Correction of Burst Errors and Erasures for 10BASE-T1S Open Access

    Gergely HUSZAK  Hiroyoshi MORITA  George ZIMMERMAN  

     
    PAPER-Network

      Pubricized:
    2021/06/23
      Vol:
    E104-B No:12
      Page(s):
    1524-1538

    IEEE P802.3cg established a new pair of Ethernet physical layer devices (PHY), one of which, the short-reach 10BASE-T1S, uses 4B/5B mapping over Differential Manchester Encoding to maintain a data rate of 10 Mb/s at MAC/PLS interface, while providing in-band signaling between transmitter and receivers. However, 10BASE-T1S does not have any error correcting capability built into it. As a response to emerging building, industrial, and transportation requirements, this paper outlines research that leads to the possibility of establishing low-complexity, backward-compatible Forward Error Correction with per-frame configurable guaranteed burst error and erasure correcting capabilities over any 10BASE-T1S Ethernet network segment. The proposed technique combines a specialized, systematic Reed-Solomon code and a novel, three-tier, technique to avoid the appearance of certain inadmissible codeword symbols at the output of the encoder. In this way, the proposed technique enables error and erasure correction, while maintaining backwards compatibility with the current version of the standard.

  • Research on DoS Attacks Intrusion Detection Model Based on Multi-Dimensional Space Feature Vector Expansion K-Means Algorithm

    Lijun GAO  Zhenyi BIAN  Maode MA  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2021/04/22
      Vol:
    E104-B No:11
      Page(s):
    1377-1385

    DoS (Denial of Service) attacks are becoming one of the most serious security threats to global networks. We analyze the existing DoS detection methods and defense mechanisms in depth. In recent years, K-Means and improved variants have been widely examined for security intrusion detection, but the detection accuracy to data is not satisfactory. In this paper we propose a multi-dimensional space feature vector expansion K-Means model to detect threats in the network environment. The model uses a genetic algorithm to optimize the weight of K-Means multi-dimensional space feature vector, which greatly improves the detection rate against 6 typical Dos attacks. Furthermore, in order to verify the correctness of the model, this paper conducts a simulation on the NSL-KDD data set. The results show that the algorithm of multi-dimensional space feature vectors expansion K-Means improves the recognition accuracy to 96.88%. Furthermore, 41 kinds of feature vectors in NSL-KDD are analyzed in detail according to a large number of experimental training. The feature vector of the probability positive return of security attack detection is accurately extracted, and a comparison chart is formed to support subsequent research. A theoretical analysis and experimental results show that the multi-dimensional space feature vector expansion K-Means algorithm has a good application in the detection of DDos attacks.

  • Signature Codes to Remove Interference Light in Synchronous Optical Code-Division Multiple Access Systems Open Access

    Tomoko K. MATSUSHIMA  Shoichiro YAMASAKI  Kyohei ONO  

     
    PAPER-Coding Theory

      Pubricized:
    2021/05/06
      Vol:
    E104-A No:11
      Page(s):
    1619-1628

    This paper proposes a new class of signature codes for synchronous optical code-division multiple access (CDMA) and describes a general method for construction of the codes. The proposed codes can be obtained from generalized modified prime sequence codes (GMPSCs) based on extension fields GF(q), where q=pm, p is a prime number, and m is a positive integer. It has been reported that optical CDMA systems using GMPSCs remove not only multi-user interference but also optical interference (e.g., background light) with a constant intensity during a slot of length q2. Recently, the authors have reported that optical CDMA systems using GMPSCs also remove optical interference with intensity varying by blocks with a length of q. The proposed codes, referred to as p-chip codes in general and chip-pair codes in particular for the case of p=2, have the property of removing interference light with an intensity varying by shorter blocks with a length of p without requiring additional equipment. The present paper also investigates the algebraic properties and applications of the proposed codes.

101-120hit(2391hit)