The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

721-740hit(18690hit)

  • A Hybrid Bayesian-Convolutional Neural Network for Adversarial Robustness

    Thi Thu Thao KHONG  Takashi NAKADA  Yasuhiko NAKASHIMA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2022/04/11
      Vol:
    E105-D No:7
      Page(s):
    1308-1319

    We introduce a hybrid Bayesian-convolutional neural network (hyBCNN) for improving the robustness against adversarial attacks and decreasing the computation time in the Bayesian inference phase. Our hyBCNN models are built from a part of BNN and CNN. Based on pre-trained CNNs, we only replace convolutional layers and activation function of the initial stage of CNNs with our Bayesian convolutional (BC) and Bayesian activation (BA) layers as a term of transfer learning. We keep the remainder of CNNs unchanged. We adopt the Bayes without Bayesian Learning (BwoBL) algorithm for hyBCNN networks to execute Bayesian inference towards adversarial robustness. Our proposal outperforms adversarial training and robust activation function, which are currently the outstanding defense methods of CNNs in the resistance to adversarial attacks such as PGD and C&W. Moreover, the proposed architecture with BwoBL can easily integrate into any pre-trained CNN, especially in scaling networks, e.g., ResNet and EfficientNet, with better performance on large-scale datasets. In particular, under l∞ norm PGD attack of pixel perturbation ε=4/255 with 100 iterations on ImageNet, our best hyBCNN EfficientNet reaches 93.92% top-5 accuracy without additional training.

  • Joint Wideband Spectrum and DOA Estimation with Compressed Sampling Based on L-Shaped Co-Prime Array

    Wanghan LV  Lihong HU  Weijun ZENG  Huali WANG  Zhangkai LUO  

     
    PAPER-Analog Signal Processing

      Pubricized:
    2022/01/21
      Vol:
    E105-A No:7
      Page(s):
    1028-1037

    As known to us all, L-shaped co-prime array (LCA) is a recently introduced two-dimensional (2-D) sparse array structure, which is extended from linear co-prime array (CA). Such sparse array geometry can be used for 2-D parameters estimation with higher degrees-of-freedom (DOF). However, in the scenario where several narrowband transmissions spread over a wide spectrum, existing technique based on LCA with Nyquist sampling may encounter a bottleneck for both analog and digital processing. To alleviate the burden of high-rate Nyquist sampling, a method of joint wideband spectrum and direction-of-arrival (DOA) estimation with compressed sampling based on LCA, which is recognized as LCA-based modulated wideband converter (MWC), is presented in this work. First, the received signal along each antenna is mixed to basebands, low-pass filtered and down-sampled to get the compressed sampling data. Then by constructing the virtual received data of 2-D difference coarray, we estimate the wideband spectrum and DOA jointly using two recovery methods where the first is a joint ESPRIT method and the other is a joint CS method. Numerical simulations illustrate the validity of the proposed LCA based MWC system and show the superiority.

  • A Two-Level Cache Aware Adaptive Data Replication Mechanism for Shared LLC

    Qianqian WU  Zhenzhou JI  

     
    LETTER-Computer System

      Pubricized:
    2022/03/25
      Vol:
    E105-D No:7
      Page(s):
    1320-1324

    The shared last level cache (SLLC) in tile chip multiprocessors (TCMP) provides a low off-chip miss rate, but it causes a long on-chip access latency. In the two-level cache hierarchy, data replication stores replicas of L1 victims in the local LLC (L2 cache) to obtain a short local LLC access latency on the next accesses. Many data replication mechanisms have been proposed, but they do not consider both L1 victim reuse behaviors and LLC replica reception capability. They either produce many useless replicas or increase LLC pressure, which limits the improvement of system performance. In this paper, we propose a two-level cache aware adaptive data replication mechanism (TCDR), which controls replication based on both L1 victim reuse behaviors prediction and LLC replica reception capability monitoring. TCDR not only increases the accuracy of L1 replica selection, but also avoids the pressure of replication on LLC. The results show that TCDR improves the system performance with reasonable hardware overhead.

  • MFG-Based Decentralized Charging Control Design of Large-Scale PEVs with Consideration of Collective Consensus

    Qiaobin FU  Zhenhui XU  Kenichi TAKAI  Tielong SHEN  

     
    PAPER-Systems and Control

      Pubricized:
    2022/01/18
      Vol:
    E105-A No:7
      Page(s):
    1038-1048

    This paper investigates the charging control strategy design problem of a large-scale plug-in electric vehicle (PEV) group, where each PEV aims to find an optimal charging strategy to minimize its own cost function. It should be noted that the collective behavior of the group is coupled in the individual cost function, which complicates the design of decentralized charging strategies. To obtain the decentralized charging strategy, a mean-field game (MFG) formulation is proposed where a penalty on collective consensus is embedded and a class of mean-field coupled time-varying stochastic systems is targeted for solving the MFG which involves the charging model of PEVs as a special case. Then, an augmented system with dimension extension and the policy iteration algorithm are proposed to solve the mean-field game problem for the class of mean-field coupled time-varying stochastic systems. Moreover, analysis of the convergence of proposed approach has been studied. Last, simulation is conducted to illustrate the effectiveness of the proposed MFG-based charging control strategy and shows that the charging control strategy can achieve desired mean-field state and impact to the power grid can be buffered.

  • Improved Optimal Configuration for Reducing Mutual Coupling in a Two-Level Nested Array with an Even Number of Sensors

    Weichuang YU  Peiyu HE  Fan PAN  Ao CUI  Zili XU  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2021/12/29
      Vol:
    E105-B No:7
      Page(s):
    856-865

    To reduce mutual coupling of a two-level nested array (TLNA) with an even number of sensors, we propose an improved array configuration that exhibits all the good properties of the prototype optimal configuration under the constraint of a fixed number of sensors N and achieves reduction of mutual coupling. Compared with the prototype optimal TLNA (POTLNA), which inner level and outer level both have N/2 sensors, those of the improved optimal TLNA (IOTLNA) are N/2-1 and N/2+1. It is proved that the physical aperture and uniform degrees of freedom (uDOFs) of IOTLNA are the same as those of POTLNA, and the number of sensor pairs with small separations of IOTLNA is reduced. We also construct an improved optimal second-order super nested array (SNA) by using the IOTLNA as the parent nested array, termed IOTLNA-SNA, which has the same physical aperture and the same uDOFs, as well as the IOTLNA. Numerical simulations demonstrate the better performance of the improved array configurations.

  • Backup Resource Allocation of Virtual Machines for Probabilistic Protection under Capacity Uncertainty

    Mitsuki ITO  Fujun HE  Eiji OKI  

     
    PAPER-Network

      Pubricized:
    2022/01/17
      Vol:
    E105-B No:7
      Page(s):
    814-832

    This paper presents robust optimization models for minimizing the required backup capacity while providing probabilistic protection against multiple simultaneous failures of physical machines under uncertain virtual machine capacities in a cloud provider. If random failures occur, the required capacities for virtual machines are allocated to the dedicated backup physical machines, which are determined in advance. We consider two uncertainties: failure event and virtual machine capacity. By adopting a robust optimization technique, we formulate six mixed integer linear programming problems. Numerical results show that for a small size problem, our presented models are applicable to the case that virtual machine capacities are uncertain, and by using these models, we can obtain the optimal solution of the allocation of virtual machines under the uncertainty. A simulated annealing heuristic is presented to solve large size problems. By using this heuristic, an approximate solution is obtained for a large size problem.

  • A Framework for Synchronous Remote Online Exams

    Haeyoung LEE  

     
    LETTER-Educational Technology

      Pubricized:
    2022/04/22
      Vol:
    E105-D No:7
      Page(s):
    1343-1347

    This letter presents a new framework for synchronous remote online exams. This framework proposes new monitoring of notebooks in remote locations and limited messaging only enabled between students and their instructor during online exams. This framework was evaluated by students as highly effective in minimizing cheating during online exams.

  • A Lower Bound on the Maximum Correlation Magnitude Outside LHZ for LHZ-FHS Sets

    Xiaoxiao CUI  Cuiling FAN  Xiaoni DU  

     
    LETTER-Coding Theory

      Pubricized:
    2022/01/21
      Vol:
    E105-A No:7
      Page(s):
    1096-1100

    Low-hit-zone frequency-hopping sequences (LHZ-FHSs) are frequency-hopping sequences with low Hamming correlation in a low-hit-zone (LHZ), which have important applications in quasi-synchronous communication systems. However, the strict quasi-synchronization may be hard to maintain at all times in practical FHMA networks, it is also necessary to minimize the Hamming correlation for time-shifts outside of the LHZ. The main objective of this letter is to propose a lower bound on the maximum correlation magnitude outside the low-hit-zone for LHZ-FHS sets. It turns out that the proposed bound is tight or almost tight in the sense that it can be achieved by some LHZ-FHS sets.

  • A Survey on Explainable Fake News Detection

    Ken MISHIMA  Hayato YAMANA  

     
    SURVEY PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2022/04/22
      Vol:
    E105-D No:7
      Page(s):
    1249-1257

    The increasing amount of fake news is a growing problem that will progressively worsen in our interconnected world. Machine learning, particularly deep learning, is being used to detect misinformation; however, the models employed are essentially black boxes, and thus are uninterpretable. This paper presents an overview of explainable fake news detection models. Specifically, we first review the existing models, datasets, evaluation techniques, and visualization processes. Subsequently, possible improvements in this field are identified and discussed.

  • PRIGM: Partial-Regression-Integrated Generic Model for Synthetic Benchmarks Robust to Sensor Characteristics

    Kyungmin KIM  Jiung SONG  Jong Wook KWAK  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2022/04/04
      Vol:
    E105-D No:7
      Page(s):
    1330-1334

    We propose a novel synthetic-benchmarks generation model using partial time-series regression, called Partial-Regression-Integrated Generic Model (PRIGM). PRIGM abstracts the unique characteristics of the input sensor data into generic time-series data confirming the generation similarity and evaluating the correctness of the synthetic benchmarks. The experimental results obtained by the proposed model with its formula verify that PRIGM preserves the time-series characteristics of empirical data in complex time-series data within 10.4% on an average difference in terms of descriptive statistics accuracy.

  • Gray Augmentation Exploration with All-Modality Center-Triplet Loss for Visible-Infrared Person Re-Identification

    Xiaozhou CHENG  Rui LI  Yanjing SUN  Yu ZHOU  Kaiwen DONG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2022/04/06
      Vol:
    E105-D No:7
      Page(s):
    1356-1360

    Visible-Infrared Person Re-identification (VI-ReID) is a challenging pedestrian retrieval task due to the huge modality discrepancy and appearance discrepancy. To address this tough task, this letter proposes a novel gray augmentation exploration (GAE) method to increase the diversity of training data and seek the best ratio of gray augmentation for learning a more focused model. Additionally, we also propose a strong all-modality center-triplet (AMCT) loss to push the features extracted from the same pedestrian more compact but those from different persons more separate. Experiments conducted on the public dataset SYSU-MM01 demonstrate the superiority of the proposed method in the VI-ReID task.

  • Parameter Selection for Radar Systems in Roadside Units

    Chia-Hsing YANG  Ming-Chun LEE  Ta-Sung LEE  Hsiu-Chi CHANG  

     
    PAPER-Sensing

      Pubricized:
    2022/01/13
      Vol:
    E105-B No:7
      Page(s):
    885-892

    Intelligent transportation systems (ITSs) have been extensively studied in recent years to improve the safety and efficiency of transportation. The use of a radar system to enable the ITSs monitor the environment is robust to weather conditions and is less invasive to user privacy. Moreover, equipping the roadside units (RSUs) with radar modules has been deemed an economical and efficient option for ITS operators. However, because the detection and tracking parameters can significantly influence the radar system performance and the best parameters for different scenarios are different, the selection of appropriate parameters for the radar systems is critical. In this study, we investigated radar parameter selection and consequently proposes a parameter selection approach capable of automatically choosing the appropriate detection and tracking parameters for radar systems. The experimental results indicate that the proposed method realizes appropriate selection of parameters, thereby significantly improving the detection and tracking performance of radar systems.

  • Channel Arrangement Design in Lumped Amplified WDM Transmission over NZ-DSF Link with Nonlinearity Mitigation Using Optical Phase Conjugation Open Access

    Shimpei SHIMIZU  Takayuki KOBAYASHI  Takeshi UMEKI  Takushi KAZAMA  Koji ENBUTSU  Ryoichi KASAHARA  Yutaka MIYAMOTO  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2022/01/17
      Vol:
    E105-B No:7
      Page(s):
    805-813

    Optical phase conjugation (OPC) is an all-optical signal processing technique for mitigating fiber nonlinearity and is promising for building cost-efficient fiber networks with few optic-electric-optic conversions and long amplification spacing. In lumped amplified systems, OPC has a little nonlinearity mitigation efficiency for nonlinear distortion induced by cross-phase modulation (XPM) due to the asymmetry of power and chromatic dispersion (CD) maps during propagation in transmission fiber. In addition, the walk-off of XPM-induced noise becomes small due to the CD compensation effect of OPC, so the deterministic nonlinear distortion increases. Therefore, lumped amplified transmission systems with OPC are more sensitive to channel spacing than conventional systems. In this paper, we show the channel spacing dependence of NZ-DSF transmission using amplification repeater with OPC. Numerical simulations show comprehensive characteristics between channel spacing and CD in a 100-Gbps/λ WDM signal. An experimental verification using periodically poled LiNbO3-based OPC is also performed. These results suggest that channel spacing design is more important in OPC-assisted systems than in conventional dispersion-unmanaged systems.

  • Latent Influence Based Self-Attention Framework for Heterogeneous Network Embedding

    Yang YAN  Qiuyan WANG  Lin LIU  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/03/24
      Vol:
    E105-D No:7
      Page(s):
    1335-1339

    In recent years, Graph Neural Networks has received enormous attention from academia for its huge potential of modeling the network traits such as macrostructure and single node attributes. However, prior mainstream works mainly focus on homogeneous network and lack the capacity to characterize the network heterogeneous property. Besides, most previous literature cannot the model latent influence link under microscope vision, making it infeasible to model the joint relation between the heterogeneity and mutual interaction within multiple relation type. In this letter, we propose a latent influence based self-attention framework to address the difficulties mentioned above. To model the heterogeneity and mutual interactions, we redesign the attention mechanism with latent influence factor on single-type relation level, which learns the importance coefficient from its adjacent neighbors under the same meta-path based patterns. To incorporate the heterogeneous meta-path in a unified dimension, we developed a novel self-attention based framework for meta-path relation fusion according to the learned meta-path coefficient. Our experimental results demonstrate that our framework not only achieves higher results than current state-of-the-art baselines, but also shows promising vision on depicting heterogeneous interactive relations under complicated network structure.

  • Event-Triggered Global Regulation of an Uncertain Chain of Integrators under Unknown Time-Varying Input Delay

    Sang-Young OH  Ho-Lim CHOI  

     
    LETTER-Systems and Control

      Pubricized:
    2021/12/24
      Vol:
    E105-A No:7
      Page(s):
    1091-1095

    We consider a regulation problem for an uncertain chain of integrators with an unknown time-varying delay in the input. To deal with uncertain parameters and unknown delay, we propose an adaptive event-triggered controller with a dynamic gain. We show that the system is globally regulated and interexecution times are lower bounded. Moreover, we show that these lower bounds can be enlarged by adjusting a control parameter. An example is given for clear illustration.

  • A Large-Scale SCMA Codebook Optimization and Codeword Allocation Method

    Shiqing QIAN  Wenping GE  Yongxing ZHANG  Pengju ZHANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2021/12/24
      Vol:
    E105-B No:7
      Page(s):
    788-796

    Sparse code division multiple access (SCMA) is a non-orthogonal multiple access (NOMA) technology that can improve frequency band utilization and allow many users to share quite a few resource elements (REs). This paper uses the modulation of lattice theory to develop a systematic construction procedure for the design of SCMA codebooks under Gaussian channel environments that can achieve near-optimal designs, especially for cases that consider large-scale SCMA parameters. However, under the condition of large-scale SCMA parameters, the mother constellation (MC) points will overlap, which can be solved by the method of the partial dimensions transformation (PDT). More importantly, we consider the upper bounded error probability of the signal transmission in the AWGN channels, and design a codeword allocation method to reduce the inter symbol interference (ISI) on the same RE. Simulation results show that under different codebook sizes and different overload rates, using two different message passing algorithms (MPA) to verify, the codebook proposed in this paper has a bit error rate (BER) significantly better than the reference codebooks, moreover the convergence time does not exceed that of the reference codebooks.

  • On a Cup-Stacking Concept in Repetitive Collective Communication

    Takashi YOKOTA  Kanemitsu OOTSU  Shun KOJIMA  

     
    LETTER-Computer System

      Pubricized:
    2022/04/15
      Vol:
    E105-D No:7
      Page(s):
    1325-1329

    Parallel computing essentially consists of computation and communication and, in many cases, communication performance is vital. Many parallel applications use collective communications, which often dominate the performance of the parallel execution. This paper focuses on collective communication performance to speed-up the parallel execution. This paper firstly offers our experimental result that splitting a session of collective communication to small portions (slices) possibly enables efficient communication. Then, based on the results, this paper proposes a new concept cup-stacking with a genetic algorithm based methodology. The preliminary evaluation results reveal the effectiveness of the proposed method.

  • IEEE754 Binary32 Floating-Point Logarithmic Algorithms Based on Taylor-Series Expansion with Mantissa Region Conversion and Division

    Jianglin WEI  Anna KUWANA  Haruo KOBAYASHI  Kazuyoshi KUBO  

     
    PAPER-Digital Signal Processing

      Pubricized:
    2022/01/17
      Vol:
    E105-A No:7
      Page(s):
    1020-1027

    In this paper, an algorithm based on Taylor series expansion is proposed to calculate the logarithm (log2x) of IEEE754 binary32 accuracy floating-point number by a multi-domain partitioning method. The general mantissa (1≤x<2) is multiplied by 2, 4, 8, … (or equivalently left-shifted by 1, 2, 3, … bits), the regions of (2≤x<4), (4≤x<8), (8≤x<16),… are considered, and Taylor-series expansion is applied. In those regions, the slope of f(x)=log2 x with respect to x is gentle compared to the region of (1≤x<2), which reduces the required number of terms. We also consider the trade-offs among the numbers of additions, subtractions, and multiplications and Look-Up Table (LUT) size in hardware to select the best algorithm for the engineer's design and build the best hardware device.

  • Supervised Audio Source Separation Based on Nonnegative Matrix Factorization with Cosine Similarity Penalty Open Access

    Yuta IWASE  Daichi KITAMURA  

     
    PAPER-Engineering Acoustics

      Pubricized:
    2021/12/08
      Vol:
    E105-A No:6
      Page(s):
    906-913

    In this study, we aim to improve the performance of audio source separation for monaural mixture signals. For monaural audio source separation, semisupervised nonnegative matrix factorization (SNMF) can achieve higher separation performance by employing small supervised signals. In particular, penalized SNMF (PSNMF) with orthogonality penalty is an effective method. PSNMF forces two basis matrices for target and nontarget sources to be orthogonal to each other and improves the separation accuracy. However, the conventional orthogonality penalty is based on an inner product and does not affect the estimation of the basis matrix properly because of the scale indeterminacy between the basis and activation matrices in NMF. To cope with this problem, a new PSNMF with cosine similarity between the basis matrices is proposed. The experimental comparison shows the efficacy of the proposed cosine similarity penalty in supervised audio source separation.

  • Cluster Expansion Method for Critical Node Problem Based on Contraction Mechanism in Sparse Graphs

    Zheng WANG  Yi DI  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2022/02/24
      Vol:
    E105-D No:6
      Page(s):
    1135-1149

    The objective of critical nodes problem is to minimize pair-wise connectivity as a result of removing a specific number of nodes in the residual graph. From a mathematical modeling perspective, it comes the truth that the more the number of fragmented components and the evenly distributed of disconnected sub-graphs, the better the quality of the solution. Basing on this conclusion, we proposed a new Cluster Expansion Method for Critical Node Problem (CEMCNP), which on the one hand exploits a contraction mechanism to greedy simplify the complexity of sparse graph model, and on the other hand adopts an incremental cluster expansion approach in order to maintain the size of formed component within reasonable limitation. The proposed algorithm also relies heavily on the idea of multi-start iterative local search algorithm, whereas brings in a diversified late acceptance local search strategy to keep the balance between interleaving diversification and intensification in the process of neighborhood search. Extensive evaluations show that CEMCNP running on 35 of total 42 benchmark instances are superior to the outcome of KBV, while holding 3 previous best results out of the challenging instances. In addition, CEMCNP also demonstrates equivalent performance in comparison with the existing MANCNP and VPMS algorithms over 22 of total 42 graph models with fewer number of node exchange operations.

721-740hit(18690hit)