The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Al(20498hit)

14241-14260hit(20498hit)

  • Quick Delay Calculation Model for Logic Circuit Optimization in Early Stages of LSI Design

    Norio OHKUBO  Takeo YAMASHITA  

     
    PAPER-Design Methods and Implementation

      Vol:
    E86-C No:4
      Page(s):
    618-623

    An accurate, fast delay calculation method suitable for high-performance, low-power LSI design is proposed. The delay calculation is composed of two steps: (1) the gate delay is calculated by using an effective capacitance obtained from a simple model we propose; and (2) the interconnect delay is also calculated from the effective capacitance and modified by using the gate-output transition time. The proposed delay calculation halves the error of a conventional rough calculation, achieving a computational error within 10% per gate stage. The mathematical models are simple enough that the method is suitable for quick delay calculation and logic circuit optimization in the early stages of LSI design. A delay optimization tool using this delay calculation method reduced the worst path delay of a multiply-add module by 11.2% and decreased the sizes of 58.1% of the gates.

  • A Low-Power MPEG-4 Codec LSI for Mobile Video Application

    Peilin LIU  Li JIANG  Hiroshi NAKAYAMA  Toshiyuki YOSHITAKE  Hiroshi KOMAZAKI  Yasuhiro WATANABE  Hisakatsu ARAKI  Kiyonori MORIOKA  Shinhaeng LEE  Hajime KUBOSAWA  Yukio OTOBE  

     
    PAPER-Design Methods and Implementation

      Vol:
    E86-C No:4
      Page(s):
    652-660

    We have developed a low-power, high-performance MPEG-4 codec LSI for mobile video applications. This codec LSI is capable of up to CIF 30-fps encoding, making it suitable for various visual applications. The measured power consumption of the codec core was 9 mW for QCIF 15-fps codec operation and 38 mW for CIF 30-fps encoding. To provide an error-robust MPEG-4 codec, we implemented an error-resilience function in the LSI. We describe the techniques that have enabled low power consumption and high performance and discuss our test results.

  • A Monte-Carlo FDTD Technique for Electromagnetic Wave Scattering from a Perfectly Conducting Fractal Surface

    Dong-Muk CHOI  Che-Young KIM  Kwang-Hee KWON  

     
    LETTER-Electromagnetic Theory

      Vol:
    E86-C No:4
      Page(s):
    668-671

    This letter presents a Monte-Carlo FDTD technique to determine the scattered field from a perfectly conducting fractal surface from which the useful information on the incoherent pattern tendency could be observed. A one-dimensional fractal surface was generated by the bandlimited Weierstrass function. In order to verify the numerical results by this technique, these results are compared with those of Kirchhoff approximations, which show a good match between them. To investigate the incoherent pattern tendency involved, the dependence of the fitting curve slope on the different D and is discussed for the bistatic and back scattering case, respectively.

  • PAE Improvement of PCS MMIC Power Amplifier with a Bias Control Circuit

    Ji Hoon KIM  Joon Hyung KIM  Youn Sub NOH  Song Gang KIM  Chul Soon PARK  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E86-C No:4
      Page(s):
    672-675

    A high efficient HBT MMIC power amplifier with a new on-chip bias control circuit was proposed for PCS applications. By adjusting the quiescent current in accordance with the output power levels, the average power usage efficiency of the power amplifier is improved by a factor of 1.4. The bias controlled power amplifier, depending on low (high) output power levels, shows 62(103) mA of quiescent current, 16(28) dBm output power with 7.5(35.4)% of power-added efficiency(PAE), -46(-45) dBc of adjacent-channel power ratio (ACPR), and 23.7(26.9) dB of gain

  • An 8-Bit 200 MS/s CMOS Folding/Interpolating Analog-to-Digital Converter

    Seung-Chan HEO  Young-Chan JANG  Sang-Hune PARK  Hong-June PARK  

     
    LETTER-Electronic Circuits

      Vol:
    E86-C No:4
      Page(s):
    676-681

    An 8-bit 200 MS/s CMOS 2-stage cascaded folding/interpolating ADC chip was implemented by applying a resistor averaging/interpolating scheme at the preamplifier outputs and the differential circuits for the encoder logic block, with a 0.35-µm double-poly CMOS process. The number of preamplifiers was reduced to half by using an averaging technique with a resistor array at the preamplifier outputs. The delay time of digital encoder block was reduced from 2.2 ns to 1.3 ns by replacing the standard CMOS logic with DCVSPG and CPL differential circuits. The measured SFDR was 42.5 dB at the sampling rate of 200 MS/s for the 10.072 MHz sinusoidal input signal.

  • Blind Image Identification and Restoration for Noisy Blurred Images Based on Discrete Sine Transform

    Dongliang HUANG  Naoyuki FUJIYAMA  Sueo SUGIMOTO  

     
    PAPER-Image Processing, Image Pattern Recognition

      Vol:
    E86-D No:4
      Page(s):
    727-735

    This paper presents a maximum likelihood (ML) identification and restoration method for noisy blurred images. The unitary discrete sine transform (DST) is employed to decouple the large order spatial state-space representation of the noisy blurred image into a bank of one-dimensional real state-space scalar subsystems. By assuming that the noises are Gaussian distributed processes, the maximum likelihood estimation technique using the expectation-maximization (EM) algorithm is developed to jointly identify the blurring functions, the image model parameters and the noise variances. In order to improve the computational efficiency, the conventional Kalman smoother is incorporated to give the estimates. The identification process also yields the estimates of transformed image data, from which the original image is restored by the inverse DST. The experimental results show the effectiveness of the proposed method and its superiority over the recently proposed spatial domain DFT-based methods.

  • A Randomized Online Algorithm for the File Caching Problem

    Seiichiro TANI  Toshiaki MIYAZAKI  

     
    PAPER-Algorithms

      Vol:
    E86-D No:4
      Page(s):
    686-697

    Caching web files reduces user response time as well as network traffic. When implementing caches, the file caching problem must be addressed; the problem is how to determine which files should be evicted from a cache when there is insufficient space for storing a new file so that the sum of the mis-hit (fault) file costs is minimized. Greedy-Dual-Size (GDS) is the best online algorithm in terms of competitiveness, i. e. , (k)/(k-h+1)-competitive, where k and h are the storage space of, respectively, GDS and an optimal offline algorithm. GDS performs very well even in trace-driven simulations. The worst-case time taken to service a request is another important measure for online file caching algorithms since slow response times render caching meaningless from the client's view point. This paper proposes a fast randomized (k)/(k-h+1)-competitive algorithm that performs in O(2log ^* k) time per file eviction or insertion, whereas GDS takes O(log k) time, where 2log ^* k is a much slower increasing function than log k. To confirm its practicality, we conduct trace driven simulations. Experimental results show that our algorithm attains only slightly worse byte hit rates and sufficiently large reduced latency in comparison with GDS, and our algorithm is a good candidate for caches requiring high-speed processing such as second-level caches in the large networks.

  • Construction of Cyclic Codes Suitable for Iterative Decoding via Generating Idempotents

    Tomoharu SHIBUYA  Kohichi SAKANIWA  

     
    PAPER-Coding Theory

      Vol:
    E86-A No:4
      Page(s):
    928-939

    A parity check matrix for a binary linear code defines a bipartite graph (Tanner graph) which is isomorphic to a subgraph of a factor graph which explains a mechanism of the iterative decoding based on the sum-product algorithm. It is known that this decoding algorithm well approximates MAP decoding, but degradation of the approximation becomes serious when there exist cycles of short length, especially length 4, in Tanner graph. In this paper, based on the generating idempotents, we propose some methods to design parity check matrices for cyclic codes which define Tanner graphs with no cycles of length 4. We also show numerically error performance of cyclic codes by the iterative decoding implemented on factor graphs derived from the proposed parity check matrices.

  • A Low Power Matched Filter for DS-CDMA Based on Analog Signal Processing

    Masahiro SASAKI  Takeyasu SAKAI  Takashi MATSUMOTO  

     
    PAPER

      Vol:
    E86-A No:4
      Page(s):
    752-757

    This paper proposes a low power consumption Analog Matched Filter (AMF) that utilizes capacitor multiply-and-accumulate operations. A high-speed, high-precision Analog-to-Digital (A/D) converter is unnecessary because the proposed circuit directly samples received analog signals. A code-shifting MF structure is used to prevent errors from accumulating. A 15-tap AMF circuit was fabricated using 0.35 µm CMOS technology. Power consumption for the 128-tap circuit is estimated to be 22.3 mW at 25 MHz and 3.3 V, and the area is estimated to be 0.33 mm2. The proposed circuit will thus be a useful LSI for mobile terminals.

  • MRAM Writing Circuitry to Compensate for Thermal Variation of Magnetization Reversal Current

    Takeshi HONDA  Noboru SAKIMURA  Tadahiko SUGIBAYASHI  Hideaki NUMATA  Sadahiko MIURA  Hiromitsu HADA  Shuichi TAHARA  

     
    PAPER-Circuit Design

      Vol:
    E86-C No:4
      Page(s):
    612-617

    MRAM-writing circuitry to compensate for the thermal variation of the magnetization-reversal current is proposed. The writing current of the proposed circuitry is designed to decrease in proportion to an increase in temperature. This technique prevents multiple-write failures from degrading 1 Gb MRAM yield where the standard deviation of magnetization-reversal current variation from other origins is less than 5%.

  • A New CPCH Access Scheme for Priority Service

    Hyu-Dae KIM  Bum-Sik BAE  Hyun-Ho CHOI  Dong-Ho CHO  

     
    LETTER-Wireless Communication Technology

      Vol:
    E86-B No:4
      Page(s):
    1448-1452

    CPCH is an uplink common channel that is used by 3GPP to support reliable packet transport. In this paper, we propose a new access scheme by using the discrimination of backoff timer for providing a prioritized service. We also present a simple system model of CPCH for EPA and use it to derive mathematical results. The results show that multi-class services with different priorities can be served effectively and easily by the proposed scheme.

  • A 2-Approximation Algorithm 2-ABIS for 2-Vertex-Connectivity Augmentation of Specified Vertices in a Graph

    Makoto TAMURA  Satoshi TAOKA  Toshimasa WATANABE  

     
    PAPER

      Vol:
    E86-A No:4
      Page(s):
    822-828

    The 2-vertex-connectivity augmentation problem for specified vertices (2VCA-SV) is defined as follows: Given an undirected graph G=(V,E), a subgraph G0=(V,E') of G, a specified set of vertices S V and a weight function w:E R^+ (nonnegative real numbers), find a set E" E-E' with the minimum total weight, such that G0+E"=(V,E' E") has at least two internally disjoint paths between any pair of vertices in S. In this paper, we propose an O(|V||E|+ |V|2 log |V|) time algorithm 2-ABIS, whose performance ratio is 2 (3, respectively), for 2VCA-SV if G0 has a connected component containing S (otherwise).

  • Performance Analysis of Channel Allocation Schemes for Supporting Multimedia Traffic in Hierarchical Cellular Systems

    Sang-Hee LEE  Jae-Sung LIM  

     
    PAPER-Wireless Communication Technology

      Vol:
    E86-B No:4
      Page(s):
    1274-1285

    In this paper, we propose two channel allocation schemes for supporting voice and multimedia traffic in hierarchical cellular systems. They are guaranteed to satisfy the required quality of service for multimedia traffic in accordance with their characteristics such as a mobile velocity for voice calls and a delay tolerance for multimedia calls. In the first, only slow-speed voice calls are allowed to overflow from macrocell to microcell and only adaptive multimedia calls can overflow from microcell to macrocell after reducing their bandwidth to the minimum channel bandwidth. In the second, in addition to the first scheme, non-adaptive multimedia calls can occupy the required channel bandwidth through reducing the channel bandwidth of adaptive multimedia calls. The proposed schemes are analyzed using the 2-dimensional Markov model. Through computer simulations, it is shown that the proposed schemes yield a significant improvement in terms of the forced termination probability of handoff calls. In particular, the second decreases the blocking probability of new calls as well as the forced termination probability of handoff calls.

  • A High-Throughput Multicarrier DS CDMA/ALOHA Network

    Shu-Ming TSENG  

     
    PAPER-Wireless Communication Technology

      Vol:
    E86-B No:4
      Page(s):
    1265-1273

    A new bandwidth-efficient asynchronous multicarrier DS CDMA scheme is proposed for the uplink. In this new scheme, each user employs a set of FIR filters whose impulse responses are a mutually orthogonal (MO) complementary set of sequences. The intentional inter-symbol interference (ISI) and multiple access interference (MAI) are eliminated by the properties of these sequences. We also propose applying this new scheme in a DS CDMA packet network in which slotted ALOHA or pure ALOHA protocol is used. Packet throughput figures are obtained for the new ALOHA/bandwidth-efficient asynchronous MC DS CDMA packet network. Numerical results are given for both slotted and pure ALOHA cases. With the same bandwidth and number of simultaneous users, the throughput is compared favorably to similar figures for single-carrier DS CDMA with random spreading sequences.

  • A New Medium Access Protocol with Prioritization of Real-Time Traffic for Multimedia Wireless Networks

    Luis LOYOLA  Tetsuya MIKI  Nobuo NAKAJIMA  

     
    PAPER-Wireless Communication Technology

      Vol:
    E86-B No:4
      Page(s):
    1247-1255

    The proposed medium access protocol deals especially with the timely-transmission of real-time packets in wireless multimedia networks where users of many types of traffic are present. It works based on Time Division Multiple Access/Time Division Duplex (TDMA/TDD) technique and fixed-length packet switching incorporating two different policies to work differently on either non-congestion or congestion periods. In the policy to deal with congestion periods the concept of urgent packet has been introduced as any packet whose transmission deadline is on the next frame. Hence, during periods of congestion users inform to the Base Station the number and average deadline of the urgent packets in their buffers through requirement messages. According to that information the system is able to distribute its resources in a more efficient way during periods of congestion making the real-time packet loss rate decrease considerably. The simulation results show a very good performance of the method in networks where different types of traffic coexist even under high traffic-load conditions. The results also show a good trade-off characteristic between the real-time access delay and the buffer occupancy of non-real time terminals during congestion periods.

  • Study and Analysis of System LSI Design Methodologies Using C-Based Behavioral Synthesis

    Hidefumi KUROKAWA  Hiroyuki IKEGAMI  Motohide OTSUBO  Kiyoshi ASAO  Kazuhisa KIRIGAYA  Katsuya MISU  Satoshi TAKAHASHI  Tetsuji KAWATSU  Kouji NITTA  Hiroshi RYU  Kazutoshi WAKABAYASHI  Minoru TOMOBE  Wataru TAKAHASHI  Akira MUKOUYAMA  Takashi TAKENAKA  

     
    PAPER

      Vol:
    E86-A No:4
      Page(s):
    787-798

    This paper describes the effects of system LSI design with C language-based behavioral synthesis following several trials of design period reduction and quality improvement for a variety of circuit types. The results of these trials are analyzed from the viewpoints of description productivity, verification productivity, reusability and design flexibility as well as hardware and software co-verification. First the C-based design flow proposed by the authors is described, and the design productivity and verification productivity under this design flow is compared to RTL design. The reusability of the behavioral IP core and its efficiency with HW/SW co-verification are also shown using design examples. Next, using the example of an MPEG-4 video decoder design, a typical design process in a C-based design is shown with considerations regarding verification efficiency, reusability of the IP core and HW/SW co-verification. Finally, the authors' perspectives regarding future directions of system LSI design are discussed.

  • Cancellation of Narrowband Interference in GPS Receivers Using NDEKF-Based Recurrent Neural Network Predictors

    Wei-Lung MAO  Hen-Wai TSAO  Fan-Ren CHANG  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E86-A No:4
      Page(s):
    954-960

    GPS receivers are susceptible to jamming by interference. This paper proposes a recurrent neural network (RNN) predictor for new application in GPS anti-jamming systems. Five types of narrowband jammers, i. e. AR process, continuous wave interference (CWI), multi-tone CWI, swept CWI, and pulsed CWI, are considered in order to emulate realistic conditions. As the observation noise of received signals is highly non-Gaussian, an RNN estimator with a nonlinear structure is employed to accurately predict the narrowband signals based on a real-time learning method. The node decoupled extended Kalman filter (NDEKF) algorithm is adopted to achieve better performance in terms of convergence rate and quality of solution while requiring less computation time and memory. We analyze the computational complexity and memory requirements of the NDEKF approach and compare them to the global extended Kalman filter (GEKF) training paradigm. Simulation results show that our proposed scheme achieves a superior performance to conventional linear/nonlinear predictors in terms of SNR improvement and mean squared prediction error (MSPE) while providing inherent protection against a broad class of interference environments.

  • Gesture Recognition Using HLAC Features of PARCOR Images

    Takio KURITA  Satoru HAYAMIZU  

     
    PAPER-Image Processing, Image Pattern Recognition

      Vol:
    E86-D No:4
      Page(s):
    719-726

    This paper proposes a gesture recognition method which uses higher order local autocorrelation (HLAC) features extracted from PARCOR images. To extract dominant information from a sequence of images, we apply linear prediction coding technique to the sequence of pixel intensities and PARCOR images are constructed from the PARCOR coefficients of the sequences of the pixel values. From the PARCOR images, HLAC features are extracted and the sequences of the features are used as the input vectors of the Hidden Markov Model (HMM) based recognizer. Since HLAC features are inherently shift-invariant and computationally inexpensive, the proposed method becomes robust to changes in the person's position and makes real-time gesture recognition possible. Experimental results of gesture recognition are shown to evaluate the performance of the proposed method.

  • OAG*: Improved Ordered Attribute Grammars for Less Type 3 Circularities

    Shin NATORI  Katsuhiko GONDOW  Takashi IMAIZUMI  Takeshi HAGIWARA  Takuya KATAYAMA  

     
    PAPER-Theory of Automata, Formal Language Theory

      Vol:
    E86-D No:4
      Page(s):
    673-685

    Ordered attribute grammars (OAGs for short) are a useful class of attribute grammars (AGs). For some attribute grammars, even though they are not circular, OAG circularity test reports that they are not ordered and fails to generate attribute evaluators because some approximation introduces circularities (called type 3 circularities in this paper). First we discuss that it is sometimes difficult for programmers to eliminate type 3 circularities by hand. Second, to reduce this difficulty, we propose a new AG class called OAG* that produces less type 3 circularities than OAG while preserving the positive characteristic of OAG. OAG* uses a global dependency graph GDS that provides a new approximation algorithm. We obtained good results with our experimental implementation of OAG*. It is shown that OAG* is different from the existing GAG and Eli/Liga systems. Finally, two combinations of Eli/Liga and OAG* are provided.

  • Experimental Evaluation of a Binary Minimum-Bandwidth Line Code MB34 for High-Speed Optical Transmission

    ChanGoo LEE  Dae Young KIM  

     
    LETTER-Transmission Systems and Transmission Equipment

      Vol:
    E86-B No:4
      Page(s):
    1416-1418

    This paper presents our experimental results in transmission of MB34 coded signal at the rate of 9.95 Gb/s over the conventional single mode fiber. The test results showed considerable improvement in receiver sensitivity, signal-to-noise-ratio (SNR), and timing margin with MB34.

14241-14260hit(20498hit)