Jisoo KIM Seonjoo CHOI Jaesung LIM
In time difference of arrival-based signal source location estimation, geometrical errors are caused by the location of multiple unmanned aerial vehicles (UAV). Herein, we propose a divide-and-conquer algorithm to determine the optimal location for each UAV. Simulations results confirm that multiple UAVs shifted to an optimal position and the location accuracy improved.
Recently, Linux Container has been the de-facto standard for a cloud system, enabling cloud providers to create a virtual environment in a much more scaled manner. However, configuring container networks remains immature and requires automatic verification for efficient cloud management. We propose Verikube, which utilizes a novel graph structure representing policies to reduce memory consumption and accelerate verification. Moreover, unlike existing works, Verikube is compatible with the complex semantics of Cilium Policy which a cloud adopts from its advantage of performance. Our evaluation results show that Verikube performs at least seven times better for memory efficiency, at least 1.5 times faster for data structure management, and 20K times better for verification.
Xiang BI Shengzhen YANG Benhong ZHANG Xing WEI
Multi-hop V2V communication is a fundamental way to realize data transmission in Vehicular Ad-hoc Networks (VANET). It has excellent potential in intelligent transportation systems and automatic vehicle driving, and positively affects the safety, reliability, and comfort of vehicles. With advantages in speed and trajectory, distribution along the route, size, etc., the urban buses have become prospective relay nodes for urban VANETs. However, it is a considerable challenge to construct stable and reliable (meeting the requirements of bandwidth, delay, and bit error rate) multi-hop routing because of the complexity of the urban road and bus line network in the communication area, as well as many unevenly distributed buses on the road, etc. Given this above, this paper proposes a new hierarchical routing algorithm based on V2V geographic topology segmentation. Urban hierarchical routing is divided into two layers. The first layer of routing is called coarse routing, which is composed of areas; the second layer of routing is called internal routing (bus routing within the area). Q-learning is used to formulate the sequence of buses that transmit information within each area. Details are as follows: Firstly, based on a city map containing road network information, the entire city is divided into small grids by physical streets. Secondly, based on an analysis of the characteristics of the adjacent grid bus lines, the grids with the same routing attributes are integrated into the same area, reducing the algorithm's computational complexity during route discovery. Then, for the calculated area set, a coarse route composed of the selected area is established by filtering out a group of areas satisfying from the source node to the destination node. Finally, the bus sequence between anchor intersections is selected within the chosen area, and a complete multi-hop route from the source node to the destination node is finally constructed. Sufficient simulations show that the proposed routing algorithm has more stable performance in terms of packet transmission rate, average end-to-end delay, routing duration, and other indicators than similar algorithms.
Iuon-Chang LIN Chin-Chen CHANG Hsiao-Chi CHIANG
The prosperous Internet communication technologies have led to e-commerce in mobile computing and made Web of Things become popular. Electronic payment is the most important part of e-commerce, so many electronic payment schemes have been proposed. However, most of proposed schemes cannot give change. Based on proxy blind signatures, an e-cash payment system is proposed in this paper to solve this problem. This system can not only provide change divisibility through Web of Things, but also provide anonymity, verifiability, unforgeability and double-spending owner track.
Tongwei LU Hao ZHANG Feng MIN Shihai JIA
Convolutional neural network (CNN) based vehicle re-identificatioin (ReID) inevitably has many disadvantages, such as information loss caused by downsampling operation. Therefore we propose a vision transformer (Vit) based vehicle ReID method to solve this problem. To improve the feature representation of vision transformer and make full use of additional vehicle information, the following methods are presented. (I) We propose a Quadratic Split Architecture (QSA) to learn both global and local features. More precisely, we split an image into many patches as “global part” and further split them into smaller sub-patches as “local part”. Features of both global and local part will be aggregated to enhance the representation ability. (II) The Auxiliary Information Embedding (AIE) is proposed to improve the robustness of the model by plugging a learnable camera/viewpoint embedding into Vit. Experimental results on several benchmarks indicate that our method is superior to many advanced vehicle ReID methods.
Kiyoshi KAMIMURA Yuki FUJIMAKI Haruki HOSHIKAWA Kazuki IMAIZUMI Kazuya IZAWA Ryo NAGASE
Multi-core fiber (MCF) is one of the most promising candidates for achieving ultra-wideband optical transmission in the near future. To build a network using MCF, a high-performance and reliable MCF connector is indispensable. We have developed an SC-type optical connector for MCF and confirmed its excellent optical performance, mechanical durability, and environmental reliability. To put the communication system using MCF into practical use, it is necessary to establish a procedure for measuring the initial connection characteristics. Fan-in / fan-out (FIFO) devices are indispensable for measuring the connection characteristics of MCF connectors. To measure the return loss of the MCF connector, it is necessary to remove the influence of reflection at the FIFO itself and at the connection points with the FIFO. In this paper, we compare four types of return loss measurement procedures (three usual method and a new method we proposed) and find that most stable measurement method involves using our new method, the OCWR method without FIFO. The OCWR method without FIFO is considered to be the most advantageous when used for outgoing inspection of connectors. The reason is that it eliminates the measurement uncertainty caused by the FIFO and enables speedy measurement.
Kazuhito MATSUDA Kouji KURIHARA Kentaro KAWAKAMI Masafumi YAMAZAKI Fuyuka YAMADA Tsuguchika TABARU Ken YOKOYAMA
Statical causal discovery is an approach to infer the causal relationship between observed variables whose causalities are not revealed. LiNGAM (Linear Non-Gaussian Acyclic Model), an algorithm for causal discovery, can calculate the causal relationship uniquely if the independent components of variables are assumed to be non-Gaussian. However, use-cases of LiNGAM are limited because of its O(d3x) computational complexity, where dx is the number of variables. This paper shows two approaches to accelerate LiNGAM causal discovery: SIMD utilization for LiNGAM's mathematical matrixes operations and MPI parallelization. We evaluate the implementation with the supercomputer Fugaku. Using 96 nodes of Fugaku, our improved version can achieve 17,531 times faster than the original OSS implementation (completed in 17.7 hours).
Hiroshi SUZUKI Tsuyoshi FUNAKI
SiC-MOSFETs are being increasingly implemented in power electronics systems as low-loss, fast switching devices. Despite the advantages of an SiC-MOSFET, its large dv/dt or di/dt has fear of electromagnetic interference (EMI) noise. This paper proposes and demonstrates a simple and robust gate driver that can suppress ringing oscillation and surge voltage induced by the turn-off of the SiC-MOSFET body diode. The proposed gate driver utilizes the channel leakage current methodology (CLC) to enhance the damping effect by elevating the gate-source voltage (VGS) and inducing the channel leakage current in the device. The gate driver can self-adjust the timing of initiating CLC operation, which avoids an increase in switching loss. Additionally, the output voltage of the VGS elevation circuit does not need to be actively controlled in accordance with the operating conditions. Thus, the circuit topology is simple, and ringing oscillation can be easily attenuated with fixed circuit parameters regardless of operating conditions, minimizing the increase in switching loss. The effectiveness and versatility of proposed gate driver were experimentally validated for a wide range of operating conditions by double and single pulse switching tests.
Naoya NIWA Hideharu AMANO Michihiro KOIBUCHI
This study presents a selective data-compression interconnection network to boost its performance. Data compression virtually increases the effective network bandwidth. One drawback of data compression is a long latency to perform (de-)compression operation at a compute node. In terms of the communication latency, we explore the trade-off between the compression latency overhead and the reduced injection latency by shortening the packet length by compression algorithms. As a result, we present to selectively apply a compression technique to a packet. We perform a compression operation to long packets and it is also taken when network congestion is detected at a source compute node. Through a cycle-accurate network simulation, the selective compression method using the above compression algorithms improves by up to 39% the network throughput with a moderate increase in the communication latency of short packets.
Hequn LI Die LIU Jiaxi LU Hai ZHAO Jiuqiang XU
Industrial networks need to provide reliable communication services, usually in a redundant transmission (RT) manner. In the past few years, several device-redundancy-based, layer 2 solutions have been proposed. However, with the evolution of industrial networks to the Industrial Internet, these methods can no longer work properly in the non-redundancy, layer 3 environments. In this paper, an SDN-based reliable communication framework is proposed for the Industrial Internet. It can provide reliable communication guarantees for mission-critical applications while servicing non-critical applications in a best-effort transmission manner. Specifically, it first implements an RT-based reliable communication method using the Industrial Internet's link-redundancy feature. Next, it presents a redundant synchronization mechanism to prevent end systems from receiving duplicate data. Finally, to maximize the number of critical flows in it (an NP-hard problem), two ILP-based routing & scheduling algorithms are also put forward. These two algorithms are optimal (Scheduling with Unconstrained Routing, SUR) and suboptimal (Scheduling with Minimum length Routing, SMR). Numerous simulations are conducted to evaluate its effectiveness. The results show that it can provide reliable, duplicate-free services to end systems. Its reliable communication method performs better than the conventional best-effort transmission method in terms of packet delivery success ratio in layer 3 networks. In addition, its scheduling algorithm, SMR, performs well on the experimental topologies (with average quality of 93% when compared to SUR), and the time overhead is acceptable.
Yuli ZHA Pengshuai CUI Yuxiang HU Julong LAN Yu WANG
Named Data Networking (NDN) uses name to indicate content mechanism to divide content, and uses content names for routing and addressing. However, the traditional network devices that support the TCP/IP protocol stack and location-centric communication mechanisms cannot support functions such as in-network storage and multicast distribution of NDN effectively. The performance of NDN routers designed for specific functional platforms is limited, and it is difficult to deploy on a large scale, so the NDN network can only be implemented by software. With the development of data plane languages such as Programmable Protocol-Independent Packet Processors (P4), the practical deployment of NDN becomes achievable. To ensure efficient data distribution in the network, this paper proposes a protocol-independent multicast method according to each binary bit. The P4 language is used to define a bit vector in the data packet intrinsic metadata field, which is used to mark the requested port. When the requested content is returned, the routing node will check which port has requested the content according to the bit vector recorded in the register, and multicast the Data packet. The experimental results show that bitwise multicast technology can eliminate the number of flow tables distributed compared with the dynamic multicast group technology, and reduce the content response delay by 57% compared to unicast transmission technology.
Atsushi FUKUDA Hiroshi OKAZAKI Shoichi NARAHASHI
This paper presents a novel frequency-controlled beam steering scheme for a phased-array antenna system (PAS). The proposed scheme employs phase-controlled carrier signals to form the PAS beam. Two local oscillators (LOs) and delay lines are used to generate the carrier signals. The carrier of one LO is divided into branches, and then the divided carriers passing through the corresponding delay lines have the desired phase relationship, which depends on the oscillation frequency of the LO. To confirm the feasibility of the scheme, four-branch PAS transmitters are configured and tested in a 10-GHz frequency band. The results verify that the formed beam is successfully steered in a wide range, i.e., the 3-dB beamwidth of approximately 100 degrees, using LO frequency control.
Takuto KANAMORI Takashi ODAN Kazuki HIROHATA Kenji KISE
Deep Neural Network (DNN) is widely used for computer vision tasks, such as image classification, object detection, and segmentation. DNN accelerator on FPGA and especially Convolutional Neural Network (CNN) is a hot topic. More research and education should be conducted to boost this field. A starting point is required to make it easy for new entrants to join this field. We believe that FPGA-based Autonomous Driving (AD) motor cars are suitable for this because DNN accelerators can be used for image processing with low latency. In this paper, we propose an FPGA-based simple and open-source mini motor car system named RVCar with a RISC-V soft processor and a CNN accelerator. RVCar is suitable for the new entrants who want to learn the implementation of a CNN accelerator and the surrounding system. The motor car consists of Xilinx Nexys A7 board and simple parts. All modules except the CNN accelerator are implemented in Verilog HDL and SystemVerilog. The CNN accelerator is converted from a PyTorch model by our tool. The accelerator is written in C++, synthesizable by Vitis HLS, and an easy-to-customize baseline for the new entrants. FreeRTOS is used to implement AD algorithms and executed on the RISC-V soft processor. It helps the users to develop the AD algorithms efficiently. We conduct a case study of the simple AD task we define. Although the task is simple, it is difficult to achieve without image recognition. We confirm that RVCar can recognize objects and make correct decisions based on the results.
Xing WEI Xuehua LI Shuo CHEN Na LI
Machine-to-Machine (M2M) communication plays a pivotal role in the evolution of Internet of Things (IoT). Cellular networks are considered to be a key enabler for M2M communications, which are originally designed mainly for Human-to-Human (H2H) communications. The introduction of M2M users will cause a series of problems to traditional H2H users, i.e., interference between various traffic. Resource allocation is an effective solution to these problems. In this paper, we consider a shared resource block (RB) and power allocation in an H2H/M2M coexistence scenario, where M2M users are subdivided into delay-tolerant and delay-sensitive types. We first model the RB-power allocation problem as maximization of capacity under Quality-of-Service (QoS) constraints of different types of traffic. Then, a learning framework is introduced, wherein a complex agent is built from simpler subagents, which provides the basis for distributed deployment scheme. Further, we proposed distributed Q-learning based autonomous RB-power allocation algorithm (DQ-ARPA), which enables the machine type network gateways (MTCG) as agents to learn the wireless environment and choose the RB-power autonomously to maximize M2M pairs' capacity while ensuring the QoS requirements of critical services. Simulation results indicates that with an appropriate reward design, our proposed scheme succeeds in reducing the impact of delay-tolerant machine type users on critical services in terms of SINR thresholds and outage ratios.
This paper shows structural optimal design of optical waveguide components utilizing an efficient 3D frequency-domain and 2D time-domain beam propagation method (BPM) with an alternating direction implicit (ADI) scheme. Usual optimal design procedure is based on iteration of numerical simulation, and total computational cost of the optimal design mainly depends on the efficiency of numerical analysis method. Since the system matrices are tridiagonal in the ADI-based BPM, efficient analysis and optimal design are available. Shape and topology optimal design shown in this paper is based on optimization of density distribution and sensitivity analysis to the density parameters. Computational methods of the sensitivity are shown in the case of using the 3D semi-vectorial and 2D time-domain BPM based on ADI scheme. The validity of this design approach is shown by design of optical waveguide components: mode converters, and a polarization beam splitter.
Hyunghoon KIM Jiwoo SHIN Hyo Jin JO
In various studies of attacks on autonomous vehicles (AVs), a phantom attack in which advanced driver assistance system (ADAS) misclassifies a fake object created by an adversary as a real object has been proposed. In this paper, we propose F-GhostBusters, which is an improved version of GhostBusters that detects phantom attacks. The proposed model uses a new feature, i.e, frequency of images. Experimental results show that F-GhostBusters not only improves the detection performance of GhostBusters but also can complement the accuracy against adversarial examples.
Masahiro YOSHIDA Koya MORI Tomohiro INOUE Hiroyuki TANAKA
Connected cars generate a huge amount of Internet of Things (IoT) sensor information called Controller Area Network (CAN) data. Recently, there is growing interest in collecting CAN data from connected cars in a cloud system to enable life-critical use cases such as safe driving support. Although each CAN data packet is very small, a connected car generates thousands of CAN data packets per second. Therefore, real-time CAN data collection from connected cars in a cloud system is one of the most challenging problems in the current IoT. In this paper, we propose an Edge computing-enhanced network Redundancy Elimination service (EdgeRE) for CAN data collection. In developing EdgeRE, we designed a CAN data compression architecture that combines in-vehicle computers, edge datacenters and a public cloud system. EdgeRE includes the idea of hierarchical data compression and dynamic data buffering at edge datacenters for real-time CAN data collection. Across a wide range of field tests with connected cars and an edge computing testbed, we show that the EdgeRE reduces bandwidth usage by 88% and the number of packets by 99%.
Rui SUN Zi YANG Lei ZHANG Yiheng YU
Person images captured by surveillance cameras in real scenes often have low resolution (LR), which suffers from severe degradation in recognition performance when matched with pre-stocked high-resolution (HR) images. There are existing methods which typically employ super-resolution (SR) techniques to address the resolution discrepancy problem in person re-identification (re-ID). However, SR techniques are intended to enhance the human eye visual fidelity of images without caring about the recovery of pedestrian identity information. To cope with this challenge, we propose an orthogonal depth feature decomposition network. And we decompose pedestrian features into resolution-related features and identity-related features who are orthogonal to each other, from which we design the identity-preserving loss and resolution-invariant loss to ensure the recovery of pedestrian identity information. When compared with the SOTA method, experiments on the MLR-CUHK03 and MLR-VIPeR datasets demonstrate the superiority of our method.
Xiaolin HOU Wenjia LIU Juan LIU Xin WANG Lan CHEN Yoshihisa KISHIYAMA Takahiro ASAI
5G has achieved large-scale commercialization across the world and the global 6G research and development is accelerating. To support more new use cases, 6G mobile communication systems should satisfy extreme performance requirements far beyond 5G. The physical layer key technologies are the basis of the evolution of mobile communication systems of each generation, among which three key technologies, i.e., duplex, waveform and multiple access, are the iconic characteristics of mobile communication systems of each generation. In this paper, we systematically review the development history and trend of the three key technologies and define the Non-Orthogonal Physical Layer (NOPHY) concept for 6G, including Non-Orthogonal Duplex (NOD), Non-Orthogonal Multiple Access (NOMA) and Non-Orthogonal Waveform (NOW). Firstly, we analyze the necessity and feasibility of NOPHY from the perspective of capacity gain and implementation complexity. Then we discuss the recent progress of NOD, NOMA and NOW, and highlight several candidate technologies and their potential performance gain. Finally, combined with the new trend of 6G, we put forward a unified physical layer design based on NOPHY that well balances performance against flexibility, and point out the possible direction for the research and development of 6G physical layer key technologies.
Taiki HAYASHI Kazuyoshi ISHIMURA Isao T. TOKUDA
Towards realization of a noise-induced synchronization in a natural environment, an experimental study is carried out using the Van der Pol oscillator circuit. We focus on acoustic sounds as a potential source of noise that may exist in nature. To mimic such a natural environment, white noise sounds were generated from a loud speaker and recorded into microphone signals. These signals were then injected into the oscillator circuits. We show that the oscillator circuits spontaneously give rise to synchronized dynamics when the microphone signals are highly correlated with each other. As the correlation among the input microphone signals is decreased, the level of synchrony is lowered monotonously, implying that the input correlation is the key determinant for the noise-induced synchronization. Our study provides an experimental basis for synchronizing clocks in distributed sensor networks as well as other engineering devices in natural environment.