The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CA(12529hit)

441-460hit(12529hit)

  • Improving Noised Gradient Penalty with Synchronized Activation Function for Generative Adversarial Networks

    Rui YANG  Raphael SHU  Hideki NAKAYAMA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/05/27
      Vol:
    E105-D No:9
      Page(s):
    1537-1545

    Generative Adversarial Networks (GANs) are one of the most successful learning principles of generative models and were wildly applied to many generation tasks. In the beginning, the gradient penalty (GP) was applied to enforce the discriminator in GANs to satisfy Lipschitz continuity in Wasserstein GAN. Although the vanilla version of the gradient penalty was further modified for different purposes, seeking a better equilibrium and higher generation quality in adversarial learning remains challenging. Recently, DRAGAN was proposed to achieve the local linearity in a surrounding data manifold by applying the noised gradient penalty to promote the local convexity in model optimization. However, we show that their approach will impose a burden on satisfying Lipschitz continuity for the discriminator. Such conflict between Lipschitz continuity and local linearity in DRAGAN will result in poor equilibrium, and thus the generation quality is far from ideal. To this end, we propose a novel approach to benefit both local linearity and Lipschitz continuity for reaching a better equilibrium without conflict. In detail, we apply our synchronized activation function in the discriminator to receive a particular form of noised gradient penalty for achieving local linearity without losing the property of Lipschitz continuity in the discriminator. Experimental results show that our method can reach the superior quality of images and outperforms WGAN-GP, DiracGAN, and DRAGAN in terms of Inception Score and Fréchet Inception Distance on real-world datasets.

  • Interpretation Method of Inversion Phenomena on Backward Transient Scattered Field Components by a Coated Metal Cylinder

    Toru KAWANO  Keiji GOTO  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2022/02/24
      Vol:
    E105-C No:9
      Page(s):
    389-397

    An interpretation method of inversion phenomena is newly proposed for backward transient scattered field components for both E- and H-polarizations when an ultra-wideband (UWB) pulse wave radiated from a line source is incident on a two-dimensional metal cylinder covered with a lossless dielectric medium layer (coated metal cylinder). A time-domain (TD) asymptotic solution, which is referred to as a TD saddle point technique (TD-SPT), is derived by applying the SPT in evaluating a backward transient scattered field which is expressed by an integral form. The TD-SPT is represented by a combination of a direct geometric optical ray (DGO) and a reflected GO (RGO) series, thereby being able to extract and calculate any backward transient scattered field component from a response waveform. The TD-SPT is useful in understanding the response waveform of a backward transient scattered field by a coated metal cylinder because it can give us the peak value and arrival time of any field component, namely DGO and RGO components, and interpret analytically inversion phenomenon of any field component. The accuracy, validity, and practicality of the TD-SPT are clarified by comparing it with two kinds of reference solutions.

  • Joint User Association and Spectrum Allocation in Satellite-Terrestrial Integrated Networks

    Wenjing QIU  Aijun LIU  Chen HAN  Aihong LU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/03/15
      Vol:
    E105-B No:9
      Page(s):
    1063-1077

    This paper investigates the joint problem of user association and spectrum allocation in satellite-terrestrial integrated networks (STINs), where a low earth orbit (LEO) satellite access network cooperating with terrestrial networks constitutes a heterogeneous network, which is beneficial in terms of both providing seamless coverage as well as improving the backhaul capacity for the dense network scenario. However, the orbital movement of satellites results in the dynamic change of accessible satellites and the backhaul capacities. Moreover, spectrum sharing may be faced with severe co-channel interferences (CCIs) caused by overlapping coverage of multiple access points (APs). This paper aims to maximize the total sum rate considering the influences of the dynamic feature of STIN, backhaul capacity limitation and interference management. The optimization problem is then decomposed into two subproblems: resource allocation for terrestrial communications and satellite communications, which are both solved by matching algorithms. Finally, simulation results show the effectiveness of our proposed scheme in terms of STIN's sum rate and spectrum efficiency.

  • A Multi-Path Routing Method with Traffic Grooming Corresponding to Path Lengths in Elastic Optical Networks

    Motoi KATO  Ken-ichi BABA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2022/03/22
      Vol:
    E105-B No:9
      Page(s):
    1033-1038

    To accommodate an increasing amount of traffic efficiently, elastic optical networks (EON) that can use optical spectrum resources flexibly have been studied. We implement multi-path routing in case we cannot allocate the spectrum with single-path routing. However, multi-path routing requires more guard bands to avoid interference between two adjacent optical paths when compared with single-path routing in EON. A multi-path routing algorithm with traffic grooming technology has been proposed. The researchers assumed that a uniform modulation level was adopted, and so they did not consider the impact of path length on the resources needed. In this paper, we propose a multi-path routing method with traffic grooming considering path lengths. Our proposed method establishes an optical multi-path considering path length, fiber utilization, and the use of traffic grooming. Simulations show we can decrease the call-blocking probability by approximately 24.8% in NSFNET. We also demonstrate the effectiveness of traffic grooming and the improvement in the utilization ratio of optical spectrum resources.

  • MSFF: A Multi-Scale Feature Fusion Network for Surface Defect Detection of Aluminum Profiles

    Lianshan SUN  Jingxue WEI  Hanchao DU  Yongbin ZHANG  Lifeng HE  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2022/05/30
      Vol:
    E105-D No:9
      Page(s):
    1652-1655

    This paper presents an improved YOLOv3 network, named MSFF-YOLOv3, for precisely detecting variable surface defects of aluminum profiles in practice. First, we introduce a larger prediction scale to provide detailed information for small defect detection; second, we design an efficient attention-guided block to extract more features of defects with less overhead; third, we design a bottom-up pyramid and integrate it with the existing feature pyramid network to construct a twin-tower structure to improve the circulation and fusion of features of different layers. In addition, we employ the K-median algorithm for anchor clustering to speed up the network reasoning. Experimental results showed that the mean average precision of the proposed network MSFF-YOLOv3 is higher than all conventional networks for surface defect detection of aluminum profiles. Moreover, the number of frames processed per second for our proposed MSFF-YOLOv3 could meet real-time requirements.

  • Multi Feature Fusion Attention Learning for Clothing-Changing Person Re-Identification

    Liwei WANG  Yanduo ZHANG  Tao LU  Wenhua FANG  Yu WANG  

     
    LETTER-Image

      Pubricized:
    2022/01/25
      Vol:
    E105-A No:8
      Page(s):
    1170-1174

    Person re-identification (Re-ID) aims to match the same pedestrain identity images across different camera views. Because pedestrians will change clothes frequently for a relatively long time, while many current methods rely heavily on color appearance information or only focus on the person biometric features, these methods make the performance dropped apparently when it is applied to Clohting-Changing. To relieve this dilemma, we proposed a novel Multi Feature Fusion Attention Network (MFFAN), which learns the fine-grained local features. Then we introduced a Clothing Adaptive Attention (CAA) module, which can integrate multiple granularity features to guide model to learn pedestrain's biometric feature. Meanwhile, in order to fully verify the performance of our method on clothing-changing Re-ID problem, we designed a Clothing Generation Network (CGN), which can generate multiple pictures of the same identity wearing different clothes. Finally, experimental results show that our method exceeds the current best method by over 5% and 6% on the VCcloth and PRCC datasets respectively.

  • Compressed Sensing Based Power Allocation and User Selection with Adaptive Resource Block Selection for Downlink NOMA Systems

    Tomofumi MAKITA  Osamu MUTA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/02/18
      Vol:
    E105-B No:8
      Page(s):
    959-968

    The application of compressed sensing (CS) theory to non-orthogonal multiple access (NOMA) systems has been investigated recently. As described in this paper, we propose a quality-of-service (QoS)-aware, low-complexity, CS-based user selection and power allocation scheme with adaptive resource block selection for downlink NOMA systems, where the tolerable interference threshold is designed mathematically to achieve a given QoS requirement by being relaxed to a constrained l1 norm optimization problem. The proposed scheme adopts two adaptive resource block (RB) selection algorithms that assign proper RB to user pairs, i.e. max-min channel assignment and two-step opportunistic channel assignment. Simulation results show that the proposed scheme is more effective at improving the user rate than other reference schemes while reducing the required complexity. The QoS requirement is approximately satisfied as long as the required QoS value is feasible.

  • Diabetes Noninvasive Recognition via Improved Capsule Network

    Cunlei WANG  Donghui LI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2022/05/06
      Vol:
    E105-D No:8
      Page(s):
    1464-1471

    Noninvasive recognition is an important trend in diabetes recognition. Unfortunately, the accuracy obtained from the conventional noninvasive recognition methods is low. This paper proposes a novel Diabetes Noninvasive Recognition method via the plantar pressure image and improved Capsule Network (DNR-CapsNet). The input of the proposed method is a plantar pressure image, and the output is the recognition result: healthy or possibly diabetes. The ResNet18 is used as the backbone of the convolutional layers to convert pixel intensities to local features in the proposed DNR-CapsNet. Then, the PrimaryCaps layer, SecondaryCaps layer, and DiabetesCaps layer are developed to achieve the diabetes recognition. The semantic fusion and locality-constrained dynamic routing are also developed to further improve the recognition accuracy in our method. The experimental results indicate that the proposed method has a better performance on diabetes noninvasive recognition than the state-of-the-art methods.

  • Mach-Zehnder Optical Modulator Integrated with Tunable Multimode Interference Coupler of Ti:LiNbO3 Waveguides for Controlling Modulation Extinction Ratio

    Anna HIRAI  Yuichi MATSUMOTO  Takanori SATO  Tadashi KAWAI  Akira ENOKIHARA  Shinya NAKAJIMA  Atsushi KANNO  Naokatsu YAMAMOTO  

     
    BRIEF PAPER-Lasers, Quantum Electronics

      Pubricized:
    2022/02/16
      Vol:
    E105-C No:8
      Page(s):
    385-388

    A Mach-Zehnder optical modulator with the tunable multimode interference coupler was fabricated using Ti-diffused LiNbO3. The modulation extinction ratio could be voltage controlled to maximize up to 50 dB by tuning the coupler. Optical single-sideband modulation was also achieved with a sideband suppression ratio of more than 30 dB.

  • Improving Fault Localization Using Conditional Variational Autoencoder

    Xianmei FANG  Xiaobo GAO  Yuting WANG  Zhouyu LIAO  Yue MA  

     
    LETTER-Software Engineering

      Pubricized:
    2022/05/13
      Vol:
    E105-D No:8
      Page(s):
    1490-1494

    Fault localization analyzes the runtime information of two classes of test cases (i.e., passing test cases and failing test cases) to identify suspicious statements potentially responsible for a failure. However, the failing test cases are always far fewer than passing test cases in reality, and the class imbalance problem will affect fault localization effectiveness. To address this issue, we propose a data augmentation approach using conditional variational auto-encoder to synthesize new failing test cases for FL. The experimental results show that our approach significantly improves six state-of-the-art fault localization techniques.

  • A Slotted Access-Inspired Group Paging Scheme for Resource Efficiency in Cellular MTC Networks

    Linh T. HOANG  Anh-Tuan H. BUI  Chuyen T. NGUYEN  Anh T. PHAM  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/02/14
      Vol:
    E105-B No:8
      Page(s):
    944-958

    Deployment of machine-type communications (MTCs) over the current cellular network could lead to severe overloading of the radio access network of Long Term Evolution (LTE)-based systems. This paper proposes a slotted access-based solution, called the Slotted Access For Group Paging (SAFGP), to cope with the paging-induced MTC traffic. The proposed SAFGP splits paged devices into multiple access groups, and each group is then allocated separate radio resources on the LTE's Physical Random Access Channel (PRACH) in a periodic manner during the paging interval. To support the proposed scheme, a new adaptive barring algorithm is proposed to stabilize the number of successful devices in each dedicated access slot. The objective is to let as few devices transmitting preambles in an access slot as possible while ensuring that the number of preambles selected by exactly one device approximates the maximum number of uplink grants that can be allocated by the eNB for an access slot. Analysis and simulation results demonstrate that, given the same amount of time-frequency resources, the proposed method significantly improves the access success and resource utilization rates at the cost of slightly increasing the access delay compared to state-of-the-art methods.

  • Multiple Hypothesis Tracking with Merged Bounding Box Measurements Considering Occlusion

    Tetsutaro YAMADA  Masato GOCHO  Kei AKAMA  Ryoma YATAKA  Hiroshi KAMEDA  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2022/05/09
      Vol:
    E105-D No:8
      Page(s):
    1456-1463

    A new approach for multi-target tracking in an occlusion environment is presented. In pedestrian tracking using a video camera, pedestrains must be tracked accurately and continuously in the images. However, in a crowded environment, the conventional tracking algorithm has a problem in that tracks do not continue when pedestrians are hidden behind the foreground object. In this study, we propose a robust tracking method for occlusion that introduces a degeneration hypothesis that relaxes the track hypothesis which has one measurement to one track constraint. The proposed method relaxes the hypothesis that one measurement and multiple trajectories are associated based on the endpoints of the bounding box when the predicted trajectory is approaching, therefore the continuation of the tracking is improved using the measurement in the foreground. A numerical evaluation using MOT (Multiple Object Tracking) image data sets is performed to demonstrate the effectiveness of the proposed algorithm.

  • Locally Differentially Private Minimum Finding

    Kazuto FUKUCHI  Chia-Mu YU  Jun SAKUMA  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/05/11
      Vol:
    E105-D No:8
      Page(s):
    1418-1430

    We investigate a problem of finding the minimum, in which each user has a real value, and we want to estimate the minimum of these values under the local differential privacy constraint. We reveal that this problem is fundamentally difficult, and we cannot construct a consistent mechanism in the worst case. Instead of considering the worst case, we aim to construct a private mechanism whose error rate is adaptive to the easiness of estimation of the minimum. As a measure of easiness, we introduce a parameter α that characterizes the fatness of the minimum-side tail of the user data distribution. As a result, we reveal that the mechanism can achieve O((ln6N/ε2N)1/2α) error without knowledge of α and the error rate is near-optimal in the sense that any mechanism incurs Ω((1/ε2N)1/2α) error. Furthermore, we demonstrate that our mechanism outperforms a naive mechanism by empirical evaluations on synthetic datasets. Also, we conducted experiments on the MovieLens dataset and a purchase history dataset and demonstrate that our algorithm achieves Õ((1/N)1/2α) error adaptively to α.

  • A Low-Cost Training Method of ReRAM Inference Accelerator Chips for Binarized Neural Networks to Recover Accuracy Degradation due to Statistical Variabilities

    Zian CHEN  Takashi OHSAWA  

     
    PAPER-Integrated Electronics

      Pubricized:
    2022/01/31
      Vol:
    E105-C No:8
      Page(s):
    375-384

    A new software based in-situ training (SBIST) method to achieve high accuracies is proposed for binarized neural networks inference accelerator chips in which measured offsets in sense amplifiers (activation binarizers) are transformed into biases in the training software. To expedite this individual training, the initial values for the weights are taken from results of a common forming training process which is conducted in advance by using the offset fluctuation distribution averaged over the fabrication line. SPICE simulation inference results for the accelerator predict that the accuracy recovers to higher than 90% even when the amplifier offset is as large as 40mV only after a few epochs of the individual training.

  • Deep Learning Based Low Complexity Symbol Detection and Modulation Classification Detector

    Chongzheng HAO  Xiaoyu DANG  Sai LI  Chenghua WANG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/01/24
      Vol:
    E105-B No:8
      Page(s):
    923-930

    This paper presents a deep neural network (DNN) based symbol detection and modulation classification detector (SDMCD) for mixed blind signals detection. Unlike conventional methods that employ symbol detection after modulation classification, the proposed SDMCD can perform symbol recovery and modulation identification simultaneously. A cumulant and moment feature vector is presented in conjunction with a low complexity sparse autoencoder architecture to complete mixed signals detection. Numerical results show that SDMCD scheme has remarkable symbol error rate performance and modulation classification accuracy for various modulation formats in AWGN and Rayleigh fading channels. Furthermore, the proposed detector has robust performance under the impact of frequency and phase offsets.

  • Performance Improvement of Radio-Wave Encrypted MIMO Communications Using Average LLR Clipping Open Access

    Mamoru OKUMURA  Keisuke ASANO  Takumi ABE  Eiji OKAMOTO  Tetsuya YAMAMOTO  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/02/15
      Vol:
    E105-B No:8
      Page(s):
    931-943

    In recent years, there has been significant interest in information-theoretic security techniques that encrypt physical layer signals. We have proposed chaos modulation, which has both physical layer security and channel coding gain, as one such technique. In the chaos modulation method, the channel coding gain can be increased using a turbo mechanism that exchanges the log-likelihood ratio (LLR) with an external concatenated code using the max-log approximation. However, chaos modulation, which is a type of Gaussian modulation, does not use fixed mapping, and the distance between signal points is not constant; therefore, the accuracy of the max-log approximated LLR degrades under poor channel conditions. As a result, conventional methods suffer from performance degradation owing to error propagation in turbo decoding. Therefore, in this paper, we propose a new LLR clipping method that can be optimally applied to chaos modulation by limiting the confidence level of LLR and suppressing error propagation. For effective clipping on chaos modulation that does not have fixed mappings, the average confidence value is obtained from the extrinsic LLR calculated from the demodulator and decoder, and clipping is performed based on this value, either in the demodulator or the decoder. Numerical results indicated that the proposed method achieves the same performance as the one using the exact LLR, which requires complicated calculations. Furthermore, the security feature of the proposed system is evaluated, and we observe that sufficient security is provided.

  • Blind Signal Separation for Array Radar Measurement Using Mathematical Model of Pulse Wave Propagation Open Access

    Takuya SAKAMOTO  

     
    PAPER-Sensing

      Pubricized:
    2022/02/18
      Vol:
    E105-B No:8
      Page(s):
    981-989

    This paper presents a novel blind signal separation method for the measurement of pulse waves at multiple body positions using an array radar system. The proposed method is based on a mathematical model of pulse wave propagation. The model relies on three factors: (1) a small displacement approximation, (2) beam pattern orthogonality, and (3) an impulse response model of pulse waves. The separation of radar echoes is formulated as an optimization problem, and the associated objective function is established using the mathematical model. We evaluate the performance of the proposed method using measured radar data from participants lying in a prone position. The accuracy of the proposed method, in terms of estimating the body displacements, is measured using reference data taken from laser displacement sensors. The average estimation errors are found to be 10-21% smaller than those of conventional methods. These results indicate the effectiveness of the proposed method for achieving noncontact measurements of the displacements of multiple body positions.

  • Backup Resource Allocation of Virtual Machines for Probabilistic Protection under Capacity Uncertainty

    Mitsuki ITO  Fujun HE  Eiji OKI  

     
    PAPER-Network

      Pubricized:
    2022/01/17
      Vol:
    E105-B No:7
      Page(s):
    814-832

    This paper presents robust optimization models for minimizing the required backup capacity while providing probabilistic protection against multiple simultaneous failures of physical machines under uncertain virtual machine capacities in a cloud provider. If random failures occur, the required capacities for virtual machines are allocated to the dedicated backup physical machines, which are determined in advance. We consider two uncertainties: failure event and virtual machine capacity. By adopting a robust optimization technique, we formulate six mixed integer linear programming problems. Numerical results show that for a small size problem, our presented models are applicable to the case that virtual machine capacities are uncertain, and by using these models, we can obtain the optimal solution of the allocation of virtual machines under the uncertainty. A simulated annealing heuristic is presented to solve large size problems. By using this heuristic, an approximate solution is obtained for a large size problem.

  • Performance Evaluation of a Hash-Based Countermeasure against Fake Message Attacks in Sparse Mobile Ad Hoc Networks

    Yuki SHIMIZU  Tomotaka KIMURA  Jun CHENG  

     
    PAPER-Network

      Pubricized:
    2021/12/24
      Vol:
    E105-B No:7
      Page(s):
    833-847

    In this study, we consider fake message attacks in sparse mobile ad hoc networks, in which nodes are chronically isolated. In these networks, messages are delivered to their destination nodes using store-carry-forward routing, where they are relayed by some nodes. Therefore, when a node has messages in its buffer, it can falsify the messages easily. When malicious nodes exist in the network, they alter messages to create fake messages, and then they launch fake message attacks, that is, the fake messages are spread over the network. To analyze the negative effects of a fake message attack, we model the system dynamics without attack countermeasures using a Markov chain, and then formalize some performance metrics (i.e., the delivery probability, mean delivery delay, and mean number of forwarded messages). This analysis is useful for designing countermeasures. Moreover, we consider a hash-based countermeasure against fake message attacks using a hash of the message. Whenever a node that has a message and its hash encounters another node, it probabilistically forwards only one of them to the encountered node. By doing this, the message and the hash value can be delivered to the destination node via different relay nodes. Therefore, even if the destination node receives a fake message, it can verify the legitimacy of the received message. Through simulation experiments, we evaluate the effectiveness of the hash-based countermeasure.

  • A Hardware Efficient Reservoir Computing System Using Cellular Automata and Ensemble Bloom Filter

    Dehua LIANG  Jun SHIOMI  Noriyuki MIURA  Masanori HASHIMOTO  Hiromitsu AWANO  

     
    PAPER-Computer System

      Pubricized:
    2022/04/08
      Vol:
    E105-D No:7
      Page(s):
    1273-1282

    Reservoir computing (RC) is an attractive alternative to machine learning models owing to its computationally inexpensive training process and simplicity. In this work, we propose EnsembleBloomCA, which utilizes cellular automata (CA) and an ensemble Bloom filter to organize an RC system. In contrast to most existing RC systems, EnsembleBloomCA eliminates all floating-point calculation and integer multiplication. EnsembleBloomCA adopts CA as the reservoir in the RC system because it can be implemented using only binary operations and is thus energy efficient. The rich pattern dynamics created by CA can map the original input into a high-dimensional space and provide more features for the classifier. Utilizing an ensemble Bloom filter as the classifier, the features provided by the reservoir can be effectively memorized. Our experiment revealed that applying the ensemble mechanism to the Bloom filter resulted in a significant reduction in memory cost during the inference phase. In comparison with Bloom WiSARD, one of the state-of-the-art reference work, the EnsembleBloomCA model achieves a 43× reduction in memory cost while maintaining the same accuracy. Our hardware implementation also demonstrated that EnsembleBloomCA achieved over 23× and 8.5× reductions in area and power, respectively.

441-460hit(12529hit)