Kento SUGIURA Yoshiharu ISHIKAWA
With the rapid increase in the number of CPU cores, software that can utilize these many cores is required. A lock-free algorithm based on compare-and-swap (CAS) operations is one of the concurrency control methods to implement such multi-threading software. A multi-word CAS (MwCAS) operation is an extension of a CAS operation to swap multiple words atomically. However, we noticed that the performance of the existing MwCAS implementation is limited because of garbage collection even if in a low-contention environment. To achieve high performance in low-contention workloads, we propose a new MwCAS algorithm without garbage collection. Experimental results show that our approach is three to five times faster than implementation with garbage collection in low-contention workloads. Moreover, the performance of the proposed method is also superior in a high-contention environment.
Hideaki OHASHI Toshiyuki SHIMIZU Masatoshi YOSHIKAWA
Peer assessment in education has pedagogical benefits and is a promising method for grading a large number of submissions. At the same time, student reliability has been regarded as a problem; consequently, various methods of estimating highly reliable grades from scores given by multiple students have been proposed. Under most of the existing methods, a nonadaptive allocation pattern, which performs allocation in advance, is assumed. In this study, we analyze the effect of student-submission allocation on score estimation in peer assessment under a nonadaptive allocation setting. We examine three types of nonadaptive allocation methods, random allocation, circular allocation and group allocation, which are considered the commonly used approaches among the existing nonadaptive peer assessment methods. Through simulation experiments, we show that circular allocation and group allocation tend to yield lower accuracy than random allocation. Then, we utilize this result to improve the existing adaptive allocation method, which performs allocation and assessment in parallel and tends to make similar allocation result to circular allocation. We propose the method to replace part of the allocation with random allocation, and show that the method is effective through experiments.
Chen CHEN Wence ZHANG Xu BAO Jing XIA
This paper studies the performance of quantized massive multiple-input multiple-output (MIMO) systems with superimposed pilots (SP), using linear minimum mean-square-error (LMMSE) channel estimation and maximum ratio combining (MRC) detection. In contrast to previous works, arbitrary-bit analog-to-digital converters (ADCs) are considered. We derive an accurate approximation of the uplink achievable rate considering the removal of estimated pilots. Based on the analytical expression, the optimal pilot power factor that maximizes the achievable rate is deduced and an expression for energy efficiency (EE) is given. In addition, the achievable rate and the optimal power allocation policy under some asymptotic limits are analyzed. Analysis shows that the systems with higher-resolution ADCs or larger number of base station (BS) antennas need to allocate more power to pilots. In contrast, more power needs to be allocated to data when the channel is slowly varying. Numerical results show that in the low signal-to-noise ratio (SNR) region, for 1-bit quantizers, SP outperforms time-multiplexed pilots (TP) in most cases, while for systems with higher-resolution ADCs, the SP scheme is suitable for the scenarios with comparatively small number of BS antennas and relatively long channel coherence time.
Weiguo ZHANG Jiaqi LU Jing ZHANG Xuewen LI Qi ZHAO
The haze situation will seriously affect the quality of license plate recognition and reduce the performance of the visual processing algorithm. In order to improve the quality of haze pictures, a license plate recognition algorithm based on haze weather is proposed in this paper. The algorithm in this paper mainly consists of two parts: The first part is MPGAN image dehazing, which uses a generative adversarial network to dehaze the image, and combines multi-scale convolution and perceptual loss. Multi-scale convolution is conducive to better feature extraction. The perceptual loss makes up for the shortcoming that the mean square error (MSE) is greatly affected by outliers; the second part is to recognize the license plate, first we use YOLOv3 to locate the license plate, the STN network corrects the license plate, and finally enters the improved LPRNet network to get license plate information. Experimental results show that the dehazing model proposed in this paper achieves good results, and the evaluation indicators PSNR and SSIM are better than other representative algorithms. After comparing the license plate recognition algorithm with the LPRNet algorithm, the average accuracy rate can reach 93.9%.
Sejin JUNG Eui-Sub KIM Junbeom YOO
Traditional safety analysis techniques have shown difficulties in incorporating dynamically changing structures of CPSs (Cyber-Physical Systems). STPA (System-Theoretic Process Analysis), one of the widely used, needs to unfold and arrange all hidden structures before beginning a full-fledged analysis. This paper proposes an intermediate model “Information Unfolding Model (IUM)” and a process “Information Unfolding Process (IUP)” to unfold dynamic structures which are hidden in CPSs and so help analysts construct control structures in STPA thoroughly.
Convolutional Neural Network (CNN) has made extraordinary progress in image classification tasks. However, it is less effective to use CNN directly to detect image manipulation. To address this problem, we propose an image filtering layer and a multi-scale feature fusion module which can guide the model more accurately and effectively to perform image manipulation detection. Through a series of experiments, it is shown that our model achieves improvements on image manipulation detection compared with the previous researches.
Duc Minh NGUYEN Hiroshi SHIRAI
In this study, edge diffraction of an electromagnetic plane wave by two-dimensional conducting wedges has been analyzed by the physical optics (PO) method for both E and H polarizations. Non-uniform and uniform asymptotic solutions of diffracted fields have been derived. A unified edge diffraction coefficient has also been derived with four cotangent functions from the conventional angle-dependent coefficients. Numerical calculations have been made to compare the results with those by other methods, such as the exact solution and the uniform geometrical theory of diffraction (UTD). A good agreement has been observed to confirm the validity of our method.
Yotaro SEKI Shinpei HAYASHI Motoshi SAEKI
Use case modeling is popular to represent the functionality of the system to be developed, and it consists of two parts: a use case diagram and use case descriptions. Use case descriptions are structured text written in natural language, and the usage of natural language can lead to poor descriptions such as ambiguous, inconsistent, and/or incomplete descriptions. Poor descriptions lead to missing requirements and eliciting incorrect requirements as well as less comprehensiveness of the produced use case model. This paper proposes a technique to automate detecting bad smells of use case descriptions, i.e., symptoms of poor descriptions. At first, to clarify bad smells, we analyzed existing use case models to discover poor use case descriptions concretely and developed the list of bad smells, i.e., a catalog of bad smells. Some of the bad smells can be refined into measures using the Goal-Question-Metric paradigm to automate their detection. The main contributions of this paper are the developed catalog of bad smells and the automated detection of these bad smells. We have implemented an automated smell detector for 22 bad smells at first and assessed its usefulness by an experiment. As a result, the first version of our tool got a precision ratio of 0.591 and a recall ratio of 0.981. Through evaluating our catalog and the automated tool, we found additional six bad smells and two metrics. Then, we obtained the precision of 0.596 and the recall of 1.000 by our final version of the automated tool.
In this paper, we present a scheme to compute either AB or AB2 multiplications over GF(2m) and propose a bit-parallel systolic architecture based on the proposed algorithm. The AB multiplication algorithm is derived in the same form as the formula of AB2 multiplication algorithm, and an architecture that can perform AB multiplication by adding very little extra hardware to AB2 multiplier is designed. Therefore, the proposed architecture can be effectively applied to hardware constrained applications that cannot deploy AB2 multiplier and AB multiplier separately.
Xudong YANG Ling GAO Yan LI Jipeng XU Jie ZHENG Hai WANG Quanli GAO
With the popularity and development of Location-Based Services (LBS), location privacy-preservation has become a hot research topic in recent years, especially research on k-anonymity. Although previous studies have done a lot of work on anonymity-based privacy protection, there are still several challenges far from being perfectly solved, such as the negative impact on the security of anonymity by the semantic information, which from anonymous locations and query content. To address these semantic challenges, we propose a dual privacy preservation scheme based on the architecture of multi-anonymizers in this paper. Different from existing approaches, our method enhanced location privacy by integrating location anonymity and the encrypted query. First, the query encryption method that combines improved shamir mechanism and multi-anonymizers is proposed to enhance query safety. Second, we design an anonymity method that enhances semantic location privacy through anonymous locations that satisfy personal semantic diversity and replace sensitive semantic locations. Finally, the experiment on the real dataset shows that our algorithms provide much better privacy and use than previous solutions.
Jinkyu KANG Seongah JEONG Hoojin LEE
In this letter, we analyze the error rate performance of M-ary coherent free-space optical (FSO) communications under strong atmospheric turbulence. Specifically, we derive the exact error rates for M-ary phase shift keying (MPSK) and M-ary quadrature amplitude modulation (MQAM) based on moment-generating function (MGF) with negative exponential distributed turbulence, where maximum ratio combining (MRC) receiver is adopted to mitigate the turbulence effects. Additionally, by evaluating the asymptotic error rate in high signal-to-noise ratio (SNR) regime, it is possible to effectively investigate and predict the error rate performance for various system configurations. The accuracy and the effectiveness of our theoretical analyses are verified via numerical results.
Tomoki KAGA Mamoru OKUMURA Eiji OKAMOTO Tetsuya YAMAMOTO
In the fifth-generation mobile communications system (5G), it is critical to ensure wireless security as well as large-capacity and high-speed communication. To achieve this, a chaos modulation method as an encrypted and channel-coded modulation method in the physical layer is proposed. However, in the conventional chaos modulation method, the decoding complexity increases exponentially with respect to the modulation order. To solve this problem, in this study, a hybrid modulation method that applies quadrature amplitude modulation (QAM) and chaos to reduce the amount of decoding complexity, in which some transmission bits are allocated to QAM while maintaining the encryption for all bits is proposed. In the proposed method, a low-complexity decoding method is constructed by ordering chaos and QAM symbols based on the theory of index modulation. Numerical results show that the proposed method maintains good error-rate performance with reduced decoding complexity and ensures wireless security.
Koichi KITAMURA Koichi KOBAYASHI Yuh YAMASHITA
In this paper, event-triggered control over a sensor network is studied as one of the control methods of cyber-physical systems. Event-triggered control is a method that communications occur only when the measured value is widely changed. In the proposed method, by solving an LMI (Linear Matrix Inequality) feasibility problem, an event-triggered output feedback controller such that the closed-loop system is asymptotically stable is derived. First, the problem formulation is given. Next, the control problem is reduced to an LMI feasibility problem. Finally, the proposed method is demonstrated by a numerical example.
Masaki NAKAMURA Shuki HIGASHI Kazutoshi SAKAKIBARA Kazuhiro OGATA
Because processes run concurrently in multitask systems, the size of the state space grows exponentially. Therefore, it is not straightforward to formally verify that such systems enjoy desired properties. Real-time constrains make the formal verification more challenging. In this paper, we propose the following to address the challenge: (1) a way to model multitask real-time systems as observational transition systems (OTSs), a kind of state transition systems, (2) a way to describe their specifications in CafeOBJ, an algebraic specification language, and (3) a way to verify that such systems enjoy desired properties based on such formal specifications by writing proof scores, proof plans, in CafeOBJ. As a case study, we model Fischer's protocol, a well-known real-time mutual exclusion protocol, as an OTS, describe its specification in CafeOBJ, and verify that the protocol enjoys the mutual exclusion property when an arbitrary number of processes participates in the protocol*.
Wen SHI Jianling LIU Jingyu ZHANG Yuran MEN Hongwei CHEN Deke WANG Yang CAO
Syndrome is a crucial principle of Traditional Chinese Medicine. Formula classification is an effective approach to discover herb combinations for the clinical treatment of syndromes. In this study, a local search based firefly algorithm (LSFA) for parameter optimization and feature selection of support vector machines (SVMs) for formula classification is proposed. Parameters C and γ of SVMs are optimized by LSFA. Meanwhile, the effectiveness of herbs in formula classification is adopted as a feature. LSFA searches for well-performing subsets of features to maximize classification accuracy. In LSFA, a local search of fireflies is developed to improve FA. Simulations demonstrate that the proposed LSFA-SVM algorithm outperforms other classification algorithms on different datasets. Parameters C and γ and the features are optimized by LSFA to obtain better classification performance. The performance of FA is enhanced by the proposed local search mechanism.
Shucong TIAN Meng YANG Jianpeng WANG Rui WANG Avik R. ADHIKARY
AlphaSeq is a new paradigm to design sequencess with desired properties based on deep reinforcement learning (DRL). In this work, we propose a new metric function and a new reward function, to design an improved version of AlphaSeq. We show analytically and also through numerical simulations that the proposed algorithm can discover sequence sets with preferable properties faster than that of the previous algorithm.
Tomokazu ODA Atsushi NAKAMURA Daisuke IIDA Hiroyuki OSHIDA
We propose a technique based on Brillouin optical time domain analysis for measuring loss and crosstalk in few-mode fibers (FMFs). The proposed technique extracts the loss and crosstalk of a specific mode in FMFs from the Brillouin gains and Brillouin gain coefficients measured under two different conditions in terms of the frequency difference between the pump and probe lights. The technique yields the maximum loss and crosstalk at a splice point by changing the electrical field injected into an FMF as the pump light. Experiments demonstrate that the proposed technique can measure the maximum loss and crosstalk of the LP11 mode at a splice point in a two-mode fiber.
Hequn LI Jiaxi LU Jinfa WANG Hai ZHAO Jiuqiang XU Xingchi CHEN
Real-time and scalable multicast services are of paramount importance to Industrial Internet of Things (IIoT) applications. To realize these services, the multicast algorithm should, on the one hand, ensure the maximum delay of a multicast session not exceeding its upper delay bound. On the other hand, the algorithm should minimize session costs. As an emerging networking paradigm, Software-defined Networking (SDN) can provide a global view of the network to multicast algorithms, thereby bringing new opportunities for realizing the desired multicast services in IIoT environments. Unfortunately, existing SDN-based multicast (SDM) algorithms cannot meet the real-time and scalable requirements simultaneously. Therefore, in this paper, we focus on SDM algorithm design for IIoT environments. To be specific, the paper first converts the multicast tree construction problem for SDM in IIoT environments into a delay-bounded least-cost shared tree problem and proves that it is an NP-complete problem. Then, the paper puts forward a shared tree (ST) algorithm called SDM4IIoT to compute suboptimal solutions to the problem. The algorithm consists of five steps: 1) construct a delay-optimal shared tree; 2) divide the tree into a set of subpaths and a subtree; 3) optimize the cost of each subpath by relaxing the delay constraint; 4) optimize the subtree cost in the same manner; 5) recombine them into a shared tree. Simulation results show that the algorithm can provide real-time support that other ST algorithms cannot. In addition, it can achieve good scalability. Its cost is only 20.56% higher than the cost-optimal ST algorithm. Furthermore, its computation time is also acceptable. The algorithm can help to realize real-time and scalable multicast services for IIoT applications.
Hiro TAMURA Kiyoshi YANAGISAWA Atsushi SHIRANE Kenichi OKADA
This paper presents a physical layer wireless device identification method that uses a convolutional neural network (CNN) operating on a quadrant IQ transition image. This work introduces classification and detection tasks in one process. The proposed method can identify IoT wireless devices by exploiting their RF fingerprints, a technology to identify wireless devices by using unique variations in analog signals. We propose a quadrant IQ image technique to reduce the size of CNN while maintaining accuracy. The CNN utilizes the IQ transition image, which image processing cut out into four-part. An over-the-air experiment is performed on six Zigbee wireless devices to confirm the proposed identification method's validity. The measurement results demonstrate that the proposed method can achieve 99% accuracy with the light-weight CNN model with 36,500 weight parameters in serial use and 146,000 in parallel use. Furthermore, the proposed threshold algorithm can verify the authenticity using one classifier and achieved 80% accuracy for further secured wireless communication. This work also introduces the identification of expanded signals with SNR between 10 to 30dB. As a result, at SNR values above 20dB, the proposals achieve classification and detection accuracies of 87% and 80%, respectively.
In this paper, the sum cell rate based on altruistic and egoistic multicell distributed beamforming (MDBF) is studied with local channel state Information (CSI). To start with, we provide two sufficient conditions for implementing altruistic and egoistic strategy based on the traditional method, and give the proof of those condition. Second, a MDBF method based on the altruistic and egoistic strategy is proposed, where the altruistic strategy is implemented with the internal penalty function. Finally, simulation results demonstrate that the effectiveness of the sufficient conditions and the proposed method has the different performance and advantages.