The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CAN(742hit)

461-480hit(742hit)

  • Rigorous Verification of Poincare Map Generated by a Continuous Piece-Wise Linear Vector Field and Its Application

    Hideaki OKAZAKI  Katsuhide FUJITA  Hirohiko HONDA  Hideo NAKANO  

     
    PAPER

      Vol:
    E88-A No:4
      Page(s):
    810-817

    This paper provides algorithms in order to solve an interval implicit function of the Poincare map generated by a continuous piece-wise linear (CPWL) vector field, with the use of interval arithmetic. The algorithms are implemented with the use of MATLAB and INTLAB. We present an application to verification of canards in two-dimensional CPWL vector field appearing in nonlinear piecewise linear circuits frequently, and confirm that the algorithms are effective.

  • Equalizer-Aided Time Delay Tracking Based on L1-Normed Finite Differences

    Jonah GAMBA  Tetsuya SHIMAMURA  

     
    PAPER-Digital Signal Processing

      Vol:
    E88-A No:4
      Page(s):
    978-987

    This paper addresses the estimation of time delay between two spatially separated noisy signals by system identification modeling with the input and output corrupted by additive white Gaussian noise. The proposed method is based on a modified adaptive Butler-Cantoni equalizer that decouples noise variance estimation from channel estimation. The bias in time delay estimates that is induced by input noise is reduced by an IIR whitening filter whose coefficients are found by the Burg algorithm. For step time-variant delays, a dual mode operation scheme is adopted in which we define a normal operating (tracking) mode and an interrupt operating (optimization) mode. In the tracking mode, only a few coefficients of the impulse response vector are monitored through L1-normed finite forward differences tracking, while in the optimization mode, the time delay optimized. Simulation results confirm the superiority of the proposed approach at low signal-to-noise ratios.

  • Active Shield Circuit for Digital Noise Suppression in Mixed-Signal Integrated Circuits

    Retdian A. NICODIMUS  Shigetaka TAKAGI  Kazuyuki WADA  

     
    PAPER

      Vol:
    E88-A No:2
      Page(s):
    438-443

    An active shield circuit which effectively reduces the substrate noise on the entire area inside the guard ring regardless of the noise source position is proposed. Simulation result shows that the proposed circuit can reduce the noise level to -85 dB while a conventional guard ring gives -52 dB.

  • Design Optimization of Active Shield Circuits for Digital Noise Suppression Based on Average Noise Evaluation

    Retdian A. NICODIMUS  Hiroto SUZUKI  Kazuyuki WADA  Shigetaka TAKAGI  

     
    PAPER

      Vol:
    E88-A No:2
      Page(s):
    444-450

    A design optimization of active shield circuit using noise averaging method is proposed. The relation between the averaged noise and the design parameters of the active shield circuit such as circuit gain and on-chip layout is examined. A simple design guideline is also provided. Simulation results show that the active shield circuit designed by the proposed optimization method gives a better noise suppression performance of about 28% than the conventional one.

  • Performance Analysis of Polynomial Cancellation Coding for OFDM Systems over Time-Varying Rayleigh Fading Channels

    Abdullah S. ALARAIMI  Takeshi HASHIMOTO  

     
    PAPER

      Vol:
    E88-B No:2
      Page(s):
    471-477

    Polynomial cancellation coding (PCC) was proposed to mitigate the sever inter-carrier-interference (ICI) in an orthogonal frequency division multiplexing (OFDM) system caused by frequency offset. In this paper, we consider the effectiveness of PCC under time-variant multi-path Rayleigh fading analytically and by simulations. We first consider an analytical expression of the signal-to-interference plus noise power ratio (SINR) and then derive an approximation of the bit-error-rate (BER) of the OFDM-PCC system under the assumption that ICI is well approximated by a white Gaussian noise. Since the bandwidth efficiency of OFDM-PCC is half of that of normal OFDM, we compare the BER performance of the scheme with the normal OFDM system of the same bit-rate when low, medium, and high level modulations are used. Our results show that OFDM-PCC performs well even for high modulation level under time-varying multi-path fading.

  • Parallel Interference Cancellation Based on Neural Network in CDMA Systems

    Yalcin IIK  Necmi TAPINAR  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E88-B No:2
      Page(s):
    800-806

    In this letter, parallel interference cancellation (PIC) in code division multiple access (CDMA) was performed with two different structures by using a neural network (NN). In the first structure (receiver-1) the NN was used as a front-end stage of a one stage PIC circuit. In the second structure (receiver-2), the NN was used instead of the one stage PIC circuit and it was trained as a multiple access interference (MAI) detector to perform the PIC process by subtracting the MAI from the outputs of the matched filter. The PIC is a classical technique in multi user detection process and its bit error rate (BER) performance is not good in one stage for most of the applications. For improving its BER performance, generally a multi stage PIC which has the high computational complexity is used. In this study, we have gotten a better BER performance than a three stages PIC receiver with both proposed receivers that have the lower computational complexity.

  • Turbo Layered Space Frequency Coded OFDM for High Speed Wireless Communications

    Jong-Bu LIM  Cheol-Jin PARK  Gi-Hong IM  

     
    PAPER

      Vol:
    E88-B No:2
      Page(s):
    463-470

    We propose a new diversity scheme for orthogonal frequency division multiplexing/multi-input multi-output (OFDM/MIMO) systems. The proposed scheme, named turbo layered space-frequency coded OFDM (TLSFC-OFDM), exploits the turbo principle with space hopping (SH). The TLSFC-OFDM system with SH provides a spatial coding so that we can obtain the transmit diversity. We also introduce a successive interference cancellation (SIC) algorithm that requires no ordering and fewer iterations to converge. As a result, this scheme reduces computational complexity. Computer simulation results show that the unordered SIC-based TLSFC-OFDM system outperforms the OFDM/H-BLAST system. It is also shown that the proposed system can operate even with fewer receive antennas than transmit antennas.

  • Improvements of Addition Algorithm on Genus 3 Hyperelliptic Curves and Their Implementation

    Masaki GONDA  Kazuto MATSUO  Kazumaro AOKI  Jinhui CHAO  Shigeo TSUJII  

     
    PAPER-Public Key Cryptography

      Vol:
    E88-A No:1
      Page(s):
    89-96

    Genus 3 hyperelliptic curve cryptosystems are capable of fast-encryption on a 64-bit CPU, because a 56-bit field is enough for their definition fields. Recently, Kuroki et al. proposed an extension of the Harley algorithm, which had been known as the fastest addition algorithm of divisor classes on genus 2 hyperelliptic curves, on genus 3 hyperelliptic curves and Pelzl et al. improved the algorithm. This paper shows an improvement of the Harley algorithm on genus 3 hyperelliptic curves using Toom's multiplication. The proposed algorithm takes only I + 70M for an addition and I + 71M for a doubling instead of I + 76M and I + 74M respectively, which are the best possible of the previous works, where I and M denote the required time for an inversion and a multiplication over the definition field respectively. This paper also shows 2 variations of the proposed algorithm in order to adapt the algorithm to various platforms. Moreover this paper discusses finite field arithmetic suitable for genus 3 hyperelliptic curve cryptosystems and shows implementation results of the proposed algorithms on a 64-bit CPU. The implementation results show a 160-bit scalar multiplication can be done within 172 µs on a 64-bit CPU Alpha EV68 1.25 GHz.

  • Proposal of a Transformation Method for Iris Codes in Iris Scanning Verification

    Haruki OTA  Shinsaku KIYOMOTO  Toshiaki TANAKA  

     
    PAPER-Biometrics

      Vol:
    E88-A No:1
      Page(s):
    287-295

    In this paper, we propose a transformation function for a user's raw iris data, an "iris code" in iris scanning verification on the server, since the iris code requires to be hidden from even a server administrator. We then show that the user can be properly authenticated on the server, even though the iris code is transformed by the proposed function. The reason is that the function has a characteristic, "The (normalized) Hamming distances between the enrolled iris codes and the verified iris codes are conserved before and after the computation of the function," that is, the normalized Hamming distance in this scheme is equal to that in the existing scheme. We also show that the transformed iris code is sufficiently secure to hide the original iris code, even if a stronger attack model is supposed than the previously described model. That can be explained from the following two reasons. One reason is that nonlinear function, which consists of the three-dimensional rotation about the x-axis and the y-axis with the iris code lengthened bit by bit, and the cyclic shift, does not enable an attacker to conjecture the iris code. The other reason is that the success probabilities for the exhaustive search attack concerning the iris code in the supposed attack models are lower than those of the previously proposed methods and are negligible.

  • A Scattered Pilot OFDM Receiver Employing Turbo ICI Cancellation in Fast Fading Environments

    Satoshi SUYAMA  Masafumi ITO  Kazuhiko FUKAWA  Hiroshi SUZUKI  

     
    PAPER-Interference Canceller

      Vol:
    E88-B No:1
      Page(s):
    115-121

    This paper proposes a scattered-pilot-OFDM reception scheme employing turbo inter-carrier interference (ICI) cancellation in the fast varying fading environments of mobile communications. In the OFDM transmission, the orthogonality among the subcarriers cannot hold due to large Doppler shift, and the OFDM signal suffers from severe degradation due to ICI. The proposed receiver carries out two modes: (i) a coherent detection (CD) mode, and (ii) a turbo ICI cancellation (TC) mode. Initially, the receiver performs the CD mode. When any decision errors are detected, it shifts from the CD mode to the TC one that carries out both the ICI cancellation and the channel estimation by using the decoder output (the log likelihood ratio). In addition, the iteration of the TC mode can improve the accuracy of the channel estimation and ICI cancellation ability. Computer simulations following specifications for the mobile reception mode in the digital terrestrial television broadcasting demonstrate that the receiver can effectively cancel ICI due to the fast varying fading, and that its average BER performance is much better than that of CD.

  • Performance of Adaptive Multistage Fuzzy-Based Partial Parallel Interference Canceller for Multi-Carrier CDMA Systems

    Yung-Fa HUANG  

     
    PAPER-Interference Canceller

      Vol:
    E88-B No:1
      Page(s):
    134-140

    In this paper, we propose an adaptive multistage fuzzy-based partial parallel interference cancellation (FB-PPIC) multiuser detector for multi-carrier direct-sequence code-division multiple-access (MC-CDMA) communication systems over frequency selective fading channels. The partial cancellation tries to reduce the cancellation error in parallel interference cancellation (PIC) schemes due to the wrong interference estimations in the early stages and thus outperforms the conventional PIC (CPIC) under the heavy load for MC-CDMA systems. Therefore, in this paper, the adaptive cancellation weights are inferred from a proposed multistage fuzzy inference system (FIS) to perform effective PPIC multiuser detection under time-varying frequency selective fading channels in MC-CDMA systems. Simulation results show that the proposed adaptive four-stage FB-PPIC scheme outperforms both CPIC and constant weight PPIC (CW-PPIC) schemes, especially in near-far environments.

  • A Selective Scan Chain Reconfiguration through Run-Length Coding for Test Data Compression and Scan Power Reduction

    Youhua SHI  Shinji KIMURA  Masao YANAGISAWA  Tatsuo OHTSUKI  

     
    PAPER-Test

      Vol:
    E87-A No:12
      Page(s):
    3208-3215

    Test data volume and power consumption for scan-based designs are two major concerns in system-on-a-chip testing. However, test set compaction by filling the don't-cares will invariably increase the scan-in power dissipation for scan testing, then the goals of test data reduction and low-power scan testing appear to be conflicted. Therefore, in this paper we present a selective scan chain reconfiguration method for test data compression and scan-in power reduction. The proposed method analyzes the compatibility of the internal scan cells for a given test set and then divides the scan cells into compatible classes. After the scan chain reconfiguration a dictionary is built to indicate the run-length of each compatible class and only the scan-in data for each class should be transferred from the ATE to the CUT so as to reduce test data volume. Experimental results for the larger ISCAS'89 benchmarks show that the proposed approach overcomes the limitations of traditional run-length coding techniques, and leads to highly reduced test data volume with significant power savings during scan testing in all cases.

  • A Hybrid Dictionary Test Data Compression for Multiscan-Based Designs

    Youhua SHI  Shinji KIMURA  Masao YANAGISAWA  Tatsuo OHTSUKI  

     
    PAPER-Test

      Vol:
    E87-A No:12
      Page(s):
    3193-3199

    In this paper, we present a test data compression technique to reduce test data volume for multiscan-based designs. In our method the internal scan chains are divided into equal sized groups and two dictionaries were build to encode either an entire slice or a subset of the slice. Depending on the codeword, the decompressor may load all scan chains or may load only a group of the scan chains, which can enhance the effectiveness of dictionary-based compression. In contrast to previous dictionary coding techniques, even for the CUT with a large number of scan chains, the proposed approach can achieve satisfied reduction in test data volume with a reasonable smaller dictionary. Experimental results showed the proposed test scheme works particularly well for the large ISCAS'89 benchmarks.

  • Iterative Adaptive Soft Parallel Interference Canceller for Turbo Coded MIMO Multiplexing

    Akinori NAKAJIMA  Deepshikha GARG  Fumiyuki ADACHI  

     
    LETTER-Terrestrial Radio Communications

      Vol:
    E87-B No:12
      Page(s):
    3813-3819

    In this paper, iterative adaptive soft parallel interference canceller (ASPIC) is proposed for turbo coded multiple-input multiple-output (MIMO) multiplexing. ASPIC is applied to transform a MIMO channel into single-input multiple-output (SIMO) channels for maximum ratio diversity combining (MRC). In the ASPIC, replicas of the interference are generated and subtracted from the received signals. For the generation of replicas with higher reliability, iterative ASPIC is proposed. It performs the iterative interference cancellation by feedback of the log-likelihood ratio (LLR) sequence obtained as the turbo decoder output. For iterative ASPIC, at the transmitter, the information sequence and parity sequence are transmitted from different antennas. In this paper, the achievable bit error rate (BER) performance, in a Rayleigh fading channel, for the turbo coded MIMO multiplexing with the proposed iterative ASPIC system is evaluated by computer simulation.

  • An Optimal Interpolated FIR Echo Canceller for Digital Subscriber Lines

    Shou-Sheu LIN  Wen-Rong WU  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E87-B No:12
      Page(s):
    3584-3592

    An adaptive interpolated FIR (IFIR) echo canceller was recently proposed for xDSL applications. This canceller consists of an FIR filter, an IFIR filter, and a tap-weight overlapping and nulling scheme. The FIR filter is used to cancel the short and rapidly changing head echo while the IFIR filter is used to cancel the long and slowly decaying tail echo. This echo canceller, which inherits the stable characteristics of the conventional FIR filter, requires low computational complexity. It is well known that the interpolation filter for an IFIR filter has great influence on the interpolated result. In this paper, a least-squares method is proposed to obtain optimal interpolation filters such that the performance of the IFIR echo canceller can be further improved. Simulations with a wide variety of loop topologies show that the optimal IFIR echo canceller can effectively cancel the echo up to 73.0 dB (for an SHDSL system). About 57% complexity reduction can be achieved compared to a conventional FIR filter.

  • A Design Scheme for Delay Testing of Controllers Using State Transition Information

    Tsuyoshi IWAGAKI  Satoshi OHTAKE  Hideo FUJIWARA  

     
    PAPER-Test

      Vol:
    E87-A No:12
      Page(s):
    3200-3207

    This paper presents a non-scan design scheme to enhance delay fault testability of controllers. In this scheme, we utilize a given state transition graph (STG) to test delay faults in its synthesized controller. The original behavior of the STG is used during test application. For faults that cannot be detected by using the original behavior, we design an extra logic, called an invalid test state and transition generator, to make those faults detectable. Our scheme allows achieving short test application time and at-speed testing. We show the effectiveness of our method by experiments.

  • A Resonant Slit-Type Probe for Millimeter-Wave Scanning Near-Field Microscopy

    Tatsuo NOZOKIDO  Tomohiro OHBAYASHI  Jongsuck BAE  Koji MIZUNO  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E87-C No:12
      Page(s):
    2158-2163

    A resonant slit-type probe is proposed in this paper that can improve measurement sensitivity in millimeter-wave scanning near-field microscopy. The probe consists of a rectangular metal waveguide incorporating the following three sections; a straight section at the tip of the probe whose height is much smaller than the operating wavelength; a standard-height waveguide section; a quarter-wave transformer section to achieve impedance-matching between the other sections. The design procedure used for the probe is presented in detail and the performance of the fabricated resonant probe is evaluated experimentally. Experiments performed at U-band frequencies in which we reconstruct 2D images show that the sensitivity of the resonant probe is improved by more than four times compared with a conventional tapered slit-type probe. Some experimental results are compared with those obtained using the finite element method (Ansoft HFSS). Good agreement is demonstrated.

  • Inner-Chip-Interference Cancellation Using Rake Receiver with Wiener Filter

    Tsung-ting TSAI  Soichi WATANABE  Yung-Liang HUANG  Takuro SATO  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E87-B No:11
      Page(s):
    3295-3302

    In this paper, a sub-optimal Rake receiver combined with a Wiener Filter is investigated for use in an indoor environment. Inner-Chip-interference is dominant when the application is indoors, so the inner-chip-interference rejection function becomes critical for the receiver. Pilot symbols in each slot are used for channel estimation and weight calculation of Rake combining through Wiener Filter. Compared to conventional combining which uses maximum ratio combining, Wiener combining using IRC (Interference rejection combining) achieves better ICI (Inner-chip-Interference) rejection. This paper clarified that the sub optimal Rake receiver using Wiener Filter is 4 dB better than the conventional Rake receiver under the indoor application.

  • Self-Organizing Neural Networks by Construction and Pruning

    Jong-Seok LEE  Hajoon LEE  Jae-Young KIM  Dongkyung NAM  Cheol Hoon PARK  

     
    PAPER-Biocybernetics, Neurocomputing

      Vol:
    E87-D No:11
      Page(s):
    2489-2498

    Feedforward neural networks have been successfully developed and applied in many areas because of their universal approximation capability. However, there still remains the problem of determining a suitable network structure for the given task. In this paper, we propose a novel self-organizing neural network which automatically adjusts its structure according to the task. Utilizing both the constructive and the pruning procedures, the proposed algorithm finds a near-optimal network which is compact and shows good generalization performance. One of its important features is reliability, which means the randomness of neural networks is effectively reduced. The resultant networks can have suitable numbers of hidden neurons and hidden layers according to the complexity of the given task. The simulation results for the well-known function regression problems show that our method successfully organizes near-optimal networks.

  • Analysis of Resonant Frequency of Fast Scanning Micromirror with Vertical Combdrives

    Hiroyuki WADA  Daesung LEE  Stefan ZAPPE  Olav SOLGAARD  

     
    LETTER-Electromechanical Devices and Components

      Vol:
    E87-C No:11
      Page(s):
    2006-2008

    The relation between resonant frequency of micromirror with vertical combdrives and applied voltage between the upper and lower comb teeth was analyzed. Resonant frequency of the micromirror was controlled by stiffness of the torsion hinge. Resonant frequency of the mirror was proportional to the applied voltage between the upper and lower comb teeth at the same tilt angle.

461-480hit(742hit)