The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] CAN(742hit)

701-720hit(742hit)

  • A New Robust Block Adaptive Filter for Colored Signal Input

    Shigenori KINJO  Hiroshi OCHI  

     
    LETTER-Digital Signal Processing

      Vol:
    E78-A No:3
      Page(s):
    437-439

    In this report, we propose a robust block adaptive digital filter (BADF) which can improve the accuracy of the estimated weights by averaging the adaptive weight vectors. We show that the improvement of the estimated weights is independent of the input signal correlation.

  • A Time Varying Step Size Normalized LMS Algorithm for Adaptive Echo Canceler Structures

    Mariko NAKANO MIYATAKE  Hector PEREZ MEANA  Luis NIÑO de RIVERA O  Fausto CASCO SANCHEZ  Juan Carlos SANCHEZ GARCIA  

     
    LETTER-Adaptive Signal Processing

      Vol:
    E78-A No:2
      Page(s):
    254-258

    This letter proposes a time varying step size normalized LMS (TVS-NLMS) algorithm for adaptive echo canceler structures. Proposed algorithm reduces distortion during double talk, without increasing the computational cost nor decreasing the convergence rate of the normalized LMS algorithm significantly. Simulation results using white noise and actual speech signals confirm the desirable features of the proposed scheme.

  • Scanning Force Microscope Using Piezoelectric Excitation and Detection

    Toshihiro ITOH  Takahiro OHASHI  Tadatomo SUGA  

     
    PAPER

      Vol:
    E78-C No:2
      Page(s):
    146-151

    This paper reports on a new dynamic scanning force microscope (SFM), in which the piezoelectric microcantilever is utilized for the lever excitation and displacement sensing. Piezoelectric cantilevers can detect their deflection without external sensing elements and be vibrated with no oscillator outside. The cantilever integrated with the deflection detector and the oscillator changes the conventional construction of a dynamic SFM and expands its range of applicability. The microcantilever used consists of a ZnO layer sandwiched with Au electrodes deposited on a thin beam of thermally grown SiO2. The length, width and thickness of the lever are 125 µm, 50 µm and 3.5 µm, respectively. We have characterized this cantilever by measuring the charge spectrum and the frequency dependence of the admittance. From the charge spectrum the mechanical quality factor measured 300 in free vibration. Typical piezoelectric constant of the ZnO film was estimated approximately as 80% of single-crystal's value. The piezoelectric cantilever can be vibrated by applying the voltage with the frequency near the resonance to the piezoelectric layer. The excited amplitude per unit voltage at the resonance frequency was calculated as about 5 µm/V. The cantilever amplitude can be detected by measuring the current between electrodes, since the admittance depends on the quality factor. We have constructed a dynamic SFM without external oscillator and detector, and successfully obtained the surface images of a sol-gel derived PZT film in the cyclic contact operation mode. The longitudinal resolution of the SFM system was 0.3 nm at a 125 Hz bandwidth.

  • An Efficient Encoding of DCT Blocks with Block-Adaptive Scanning

    Jong Hwa LEE  Su Won KANG  Kyeong Ho YANG  Choong Woong LEE  

     
    PAPER

      Vol:
    E77-B No:12
      Page(s):
    1489-1494

    In a hybrid coder which employs motion compensation and discrete cosine transform (MC-DCT coder), up to 90% of bits are used to represent the quantized DCT blocks. So it is most important to represent them with as few bits as possible. In this paper, we propose an efficient method for encoding the quantized DCT blocks of motion compensated prediction (MCP) errors, which adaptively selects one of a few scanning patterns. The scanning pattern selection of an MCP error block is based on the motion compensated images which are always available at the decoder as well as at the encoder. No overhead information for the scanning patterns needs to be transmitted. Simulation results show that the average bit rate reduction amounts to 5%.

  • A Reduced Scan Shift Method for Sequential Circuit Testing

    Yoshinobu HIGAMI  Seiji KAJIHARA  Kozo KINOSHITA  

     
    PAPER

      Vol:
    E77-A No:12
      Page(s):
    2010-2016

    This paper presents a method, called reduced scan shift, which generates short test sequences for full scan circuits. In this method, scan shift operations can be reduced, i.e., not all but part of flip-flops (FFs) are controlled and observed. This method, unlike partial scan methods, does not decrease fault coverage. In the reduced scan shift, test vectors for the combinational part of a circuit are fistly generated. Since short test sequence will be obtained from the small test vectors set, test compaction techniques are used in the test vector generation. For each test vector in the obtained test set, it is found which FFs should be controlled or observed. And then a scan chain is configured so that FFs more frequently required to be controlled (observed) can be located close to the scan input (output). After the scan chain is configured, the scan shift requirement is examined for the essential faults of each test vector. Essential fault is defined to be a fault which is detected by only one test vector but not other test vectors. The order of test vectors is carefully determined by comparing the scan control requirement of a test vector with the scan observation requirement of another test vector so that unnecessary scan shift operations only for controlling or observing FFs can be reduced. A method of determining the order of test vectors with state transition is additionally described. The effectiveness of the proposed method is shown by the experimental results for benchmark circuits.

  • Contact Characterisitcs of New Self-Lubricating Composite Materials

    Yoshitada WATANABE  

     
    PAPER-Sliding Contacts

      Vol:
    E77-C No:10
      Page(s):
    1662-1667

    Composite materials of solid lubricants, such as graphite, MoS2, WS2, etc., and metals are being used as the sliding electrical contacts. However, few reports have so far been presented on the detailed characteristics of such composite materials. It is shown in this report that contact resistance and coefficient of friction of the sliding contact of the composite material of Cu-Nb system against Cu were higher than those of the sliding contact of the composite material of Cu-Sn system against Cu. It was, further, found that composite materials of Cu-Sn system were superior to those of Cu-Nb system being both contact resistances and coefficients of friction lowered. At the same time, it was found that performances of composite materials of Cu-Sn alloy base containing exclusively WS2 were superior to those containing both WS2 and MoS2. It was, therefore, suggested that proper samples suitable for the service conditions should be selected from the composite materials of Cu-Sn system which contain exclusively WS2 for the practical applications.

  • Mapping QR Decomposition on Parallel Computers: A Study Case for Radar Applications

    Antonio d'ACIERNO  Michele CECCARELLI  Alfonso FARINA  Alfredo PETROSINO  Luca TIMMONERI  

     
    PAPER-Electronic and Radio Applications

      Vol:
    E77-B No:10
      Page(s):
    1264-1271

    The sidelobe canceler in radar systems is a highly computational demanding problem. It can be efficiently tackled by resorting to the QR decomposition mapped onto a systolic array processor. The paper reports several mapping strategies by using massive parallel computers available on the market. MIMD as well as SIMD machines have been used, specifically MEIKO Computing Surface, nCUBE2, Connection Machine CM-200, and MasPar MP-1. The achieved data throughput values have been measured for a number of operational situations of practical interest.

  • A Subband Adaptive Filtering Algorithm with Adaptive Intersubband Tap-Assignment

    Akihiko SUGIYAMA  Akihiro HIRANO  

     
    PAPER-Adaptive Digital Filters

      Vol:
    E77-A No:9
      Page(s):
    1432-1438

    This paper proposes a new subband adaptive filtering algorithm for adaptive FIR filters. The number of taps for each subband filter is adaptively controlled based on a sum of the absolute coefficients or the coefficient power in conjunction with the subband signal power. Keeping the total number of taps constant, redundant taps are redistributed to subbands where the number of taps is insufficient. Simulation results with a white signal show that the number of taps in each subband approaches an optimum as each subband filter converges. For a colored signal, tap assignment by the new algorithm is as stable as for a white signal.

  • The Improvement of Compositional Distribution in Depth and Surface Morphology of YBa2Cu3O7-δ-SrTiOx Multilayers

    Chien Chen DIAO  Gin-ichiro OYA  

     
    PAPER-HTS

      Vol:
    E77-C No:8
      Page(s):
    1209-1217

    Almost stoichiometric YBa2Cu3O7-δ(110) or (103) and SrTiOx(110) films, and multilayer films consisting of them have successfully been grown epitaxially on hot SrTiO3 substrates by 90off-axis rf magnetron sputtering with facing targets. Their whole composition, compositional distribution in depth, crystallinity and surface morphology were examined by inductively coupled plasma spectroscopy, Auger electron spectroscopy, reflection high-energy electron diffraction, and scanning tunneling microscopy or atomic force microscope, respectively. When any YBa2Cu3O7-δ film was exposed to air after deposition, a Ba-rich layer was formed in a near surface region of the film. However, such a compositional distribution in depth of the film was improved by in situ deposition of a SrTiOx film on it. Moreover, the surface roughness of the YBa2Cu3O7-δ film was improved by predeposition of a SrTiOx film under it. On the basis of these results, both YBa2Cu3O7-δ/SrTiOx/YBa2Cu3O7-δ/SrTiO3(sub.) and YBa2Cu3O7-δ/SrTiOx/YBa2Cu3O7-δ/SrTiOx/SrTiO3(sub.) multilayer films with average surface roughness of 3 nm were grown reproducibly, which had uniform compositional distribution throughout the depth of the film except a near surface region of the top YBa2Cu3O7-δ layer. A new 222 structure described by Sr8Ti8O20 (Sr2Ti2O5) with a long range ordered arrangement of oxygen vacancies was formed in the SrTiOx films deposited epitaxially on YBa2Cu3O7-δ films.

  • Coherent Hybrid DS-FFH CDMA with Adaptive Interference Cancelling for Cellular Mobile Communications

    Shigeru TOMISATO  Kazuhiko FUKAWA  Hiroshi SUZUKI  

     
    PAPER

      Vol:
    E77-B No:5
      Page(s):
    589-597

    This paper proposes Coherent-HYBrid Direct-Sequence Fast-Frequency-Hopping (CHYB-DS-FFH) CDMA with Adaptive Interference Cancelling (AIC) for cellular mobile communications. The features of CHYB-DS-FFH are symbol-by-symbol frequency diversity and low chip-rate DS multiplexing both of which are based on a coherent FFH modulation and demodulation scheme. The combination of coherent FFH, space diversity, and AIC is very effective for reducing the performance degradation due to interference. Computer simulations demonstrate BER performance of a 2 hop 500-kHz-interval frequency hopping system using () a linear canceller or () a nonlinear canceller. Both systems employ the two branch space diversity reception of 10kb/s QPSK with FFH over a 1MHz system bandwidth. In quasi-static channels, the average BER performance is 10-2 with average Eb/N0 less than 8dB. In dynamic fading channels under full interference conditions, CHYB-DS-FFH with the linear adaptive interference canceller realizes a BER of 10-2 at the average Eb/N0 of 15dB with maximum Doppler frequency fD of 5Hz, whereas CHYB-DS-FFH with the non-linear adaptive interference canceller achieves the same BER at the average Eb/N0 of 15dB with fD, equal to 30Hz.

  • Blind Interference Cancelling Equalizer for Mobile Radio Communications

    Kazuhiko FUKAWA  Hiroshi SUZUKI  

     
    PAPER

      Vol:
    E77-B No:5
      Page(s):
    580-588

    This paper proposes a new adaptive Interference Cancelling Equalizer (ICE) with a blind algorithm. From a received signal, ICE not only eliminates inter-symbol interference, but also cancels co-channel interference. Blind ICE can operate well even if training signals for the interference are unknown. First, training signal conditions for applying blind ICE are considered. Next, a theoretical derivation for blind ICE is developed in detail by applying the maximum likelihood estimation theory. It is shown that RLS-MLSE with diversity, which is derived for mobile radio equalizers, is also effective for blind ICE. Computer simulations demonstrate the 40kb/s QDPSK transmission performance of Blind ICE as a blind canceller with two branch diversity reception under Rayleigh fading in a single interference environment. The simulations assume synchronous training; the canceller is trained for the desired signal but not for the interference signals. Blind ICE can be successfully achieved at more than -10dB CIR values when average Eb/N0 is 15dB and a maximum Doppler frequency is 40Hz.

  • A Multiple Sidelobe Canceller Switching over Auxiliary Antennas Arranged in Triangular Order

    Tetsuo KIRIMOTO  Yasuhiro HARASAWA  Atsushi SHIMADA  

     
    PAPER-Electronic and Radio Applications

      Vol:
    E77-B No:4
      Page(s):
    519-525

    Many previous works state that a multiple Sidelobe canceller (MSLC) with two auxiliary antennas is successful in suppressing two interference signals received simultaneously by sidelobes of a main antenna. In this paper, we show that the MSLC does not always guarantee such capability in three dimensional applications where the incident direction of interference signals is defined by two angles (elevation and azimuth). We show the singularity of the autocorrelation matrix for the auxiliary channel signals induces the degradation of the capability by analyzing characteristics of MSLC's in three dimensional applications from the view point of the eigenvalue problem. To overcome this singularity, we propose a novel MSLC controlling the placement of auxiliary antennas by means of switching over three antennas arranged triangularly. Some simulations are conducted to show the effectiveness of the proposed MSLC.

  • An Analysis of and a Method of Enhancing the Intensity of OBIRCH Signal for Defects Observation in VLSI Metal Interconnections

    Naoki KAWAMURA  Tomoaki SAKAI  Masakazu SHIMAYA  

     
    PAPER

      Vol:
    E77-C No:4
      Page(s):
    579-584

    The origin of and a method of enhancing the Optical Beam Induced Resistance Change (OBIRCH) signal for defect observation in VLSI metal interconnections is discussed based on a numerical analysis of three-dimensional thermal conduction and experimental results. The numerical analysis shows that the OBIRCH signal originates from a slight increase in the resistance of the metal line caused by laser beam heating and that its effect is influenced by the temperature of the metal layer. Both simulations and experimental results suggest that cooling the sample is preferable to detect the OBIRCH signal. The decrease in the total resistance of the metal line without any change in the amount of the resistance increase under laser illumination is found to be the main cause of the OBIRCH signal enhancement under low temperature measurement.

  • A Fast Convergence Algorithm for Adaptive FIR Filters with Sparse Taps

    Akihiko SUGIYAMA  Shigeji IKEDA  

     
    PAPER-Adaptive Signal Processing

      Vol:
    E77-A No:4
      Page(s):
    681-687

    This paper proposes a fast convergence algorithm for adaptive FIR filters with sparse taps. Coefficient values and positions are simultaneously controlled. The proposed algorithm consists of two stages: flat-delay estimation and tapposition control with a constraint. The flat-delay estimation is carried out by estimating the significant dispersive region of the impulse response. The constrained tap-position control is achieved by imposing a limit on the new-tap-position search. Simulation results show that the proposed algorithm reduces the convergence speed by up to 85% over the conventional algorithms for a white signal input. For a colored signal, it also converges in 40% of the convergence time by the conventional algorithms. The proposed algorithm is applicable to adaptive FIR filters which are to model a path with long flat delay, such as echo cancelers for satellite-link communications.

  • A Linearly-Polarized Slotted Waveguide Array Using Reflection-Cancelling Slot Pairs

    Kunio SAKAKIBARA  Jiro HIROKAWA  Makoto ANDO  Naohisa GOTO  

     
    PAPER-Antennas and Propagation

      Vol:
    E77-B No:4
      Page(s):
    511-518

    Resonant slots are widely used for conventional slotted waveguide array. Reflection from each slot causes a standing wave in the waveguide and beam tilting technique is essential to suppress the reflection at the antenna input port. But the slot reflection narrows the overall frequency bandwidth and the design taking it into account is complicated. This paper proposes a reflection cancelling slot pair as an array element, which consists of two slots spaced by 1/4λg. Round trip path-length difference between them is 1/2λg and reflection waves from a pair disappear and traveling-wave excitation in the waveguide is realized. The full wave analysis reveals that mutual coupling between paired slots is large and seriously reduces the radiation from a pair. Offset arrangement of slots in a pair is recommended to decrease the mutual coupling and to realize strong coupling. In practical array design, the mutual couplings from other pairs were simulated by imposing periodic boundary conditions above the aperture. To clarify the advantages of the slot pair over a conventional resonant slot, the predicted characteristics are compared. Reflection characteristics of the array using the slot pair is excellent and a boresite beam array can be realized. In addition, a slot pair can realize stronger coupling than the conventional resonant slot, while the bandwidth of the former in terms of the aperture field phase illumination is narrower than that of the latter. These suggests that the slot pair array is much more suitable for a small array than conventional one. Finally, the predicted characteristics are confirmed by experiments.

  • Stochastic Gradient Algorithms with a Gradient-Adaptive and Limited Step-Size

    Akihiko SUGIYAMA  

     
    PAPER-Adaptive Signal Processing

      Vol:
    E77-A No:3
      Page(s):
    534-538

    This paper proposes new algorithms for adaptive FIR filters. The proposed algorithms provide both fast convergence and small final misadjustment with an adaptive step size even under an interference to the error. The basic algorithm pays special attention to the interference which contaminates the error. To enhance robustness to the interference, it imposes a special limit on the increment/decrement of the step-size. The limit itself is also varied according to the step-size. The basic algorithm is extended for application to nonstationary signals. Simulation results with white signals show that the final misadjustment is reduced by up to 22 dB under severe observation noise at a negligible expense of the convergence speed. An echo canceler simulation with a real speech signal exhibits its potential for a nonstationary signal.

  • Study on Snow Attaching to the TACAN Antenna

    Yoshihiko KUWAHARA  Naohito OSHIDA  Yoshihiko MATSUZAWA  Mitsuo KATO  

     
    PAPER-Electronic and Radio Applications

      Vol:
    E77-B No:2
      Page(s):
    248-255

    The TACAN is located where there is no obstruction to its line-of-sight coverage. When it snows, its radome, particularly its windward side is covered with snow. This partial snow attaching on the radome causes azimuth error of the TACAN. In this paper, a simple computer simulation for estimation of the azimuth error caused by such snow attaching is proposed. Then we checked the simulation results against the test results of the azimuth error due to pseudo ice/snow layer and the results of measurements in the fields. Finally, we propose a spherical radome to alleviate this problem and its test results are presented. We think that this study is also applicable for radar antennas.

  • Interconnection Architecture Based on Beam-Steering Devices

    Hideo ITOH  Seiji MUKAI  Hiroyoshi YAJIMA  

     
    INVITED PAPER

      Vol:
    E77-C No:1
      Page(s):
    15-22

    Beam-steering devices are attractive for spatial optical interconnections. Those devices are essential not only for fixed connecting routed optical interconnections, but for flexible connecting routed optical interconnections. The flexible connecting routed optical interconections are more powerful than the conventional fixed connecting routed ones. Structures and characteristics of beam-steering devices, a beam-scanning laser diode and a fringe-shifting laser diode, are reported for those interconnections. Using these lasers, the configurations of several optical interconnections, such as optical buses and optical data switching links as examples of fixed and flexible connecting routed optical interconnections are discussed.

  • Focused Ion Beam Applications to Failure Analysis of Si Device Chip

    Kiyoshi NIKAWA  

     
    PAPER-Failure Physics and Failure Analysis

      Vol:
    E77-A No:1
      Page(s):
    174-179

    New focused ion beam (FIB) methods for microscopic cross-sectioning and observation, microscopic crosssectioning and elemental analysis, and aluminum film microstructure observation are presented. The new methods are compared to the conventional methods and the conventional FIB methods, from the four viewpoints such as easiness of analysis, analysis time, spatial resolution, and pinpointing precision. The new FIB methods, as a result, are shown to be the best ones totally judging from the viewpoints shown above.

  • Equation for Brief Evaluation of the Convergence Rate of the Normalized LMS Algorithm

    Kensaku FUJII  Juro OHGA  

     
    LETTER

      Vol:
    E76-A No:12
      Page(s):
    2048-2051

    This paper presents an equation capable of briefly evaluating the length of white noise sequence to be sent as a training signal. The equation is formulated by utilizing the formula describing the convergence property, which has been derived from the IIR filter expression of the NLMS algorithm. The result revealed that the length is directly proportional to I/[K(2-K)] where K is a step gain and I is the number of the adaptive filter taps.

701-720hit(742hit)